Abstract
The acyl lipids and their constituent fatty acids were studied in the photosynthetic bacteria Rhodospirillum rubrum, Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides, which were grown under photosynthetic and non-photosynthetic conditions. The major lipids were found to be phosphatidylethanolamine, phosphatidylglycerol and cardiolipin in each bacterium. The two Rhodopseudomonas species also contained significant quantities of phosphatidylcholine. Other acyl lipids accounted for less than 10% of the total. On changing growth conditions from non-photosynthetic to photosynthetic a large increase in the relative proportion of phosphatidylglycerol was seen at the expense of phosphatidyl-ethanolamine. In Rhodospirillum rubrum the fatty acids of the major phospholipids showed an increase in the proportion of palmitate and stearate and a decrease in palmitoleate and vaccenate on changing growth conditions to photosynthetic. In contrast, the exceptionally high levels (>80%) of vaccenate in individual phospholipids of Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides were unaffected by changing growth conditions to photosynthetic. Analysis of the lipids of chromatophores, isolated from the three bacteria, showed that these preparations were enriched in phosphatidylglycerol. The large increase in this phospholipid, seen during growth under photosynthetic conditions, appeared, therefore, to be due to a proliferation of chromatophore membranes. Possible roles for acyl lipids in the formation and function of the photosynthetic apparatus of bacteria are discussed.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birrell G. B., Sistrom W. R., Griffith O. H. Lipid-protein associations in chromatophores from the photosynthetic bacterium Rhodopseudomonas sphaeroides. Biochemistry. 1978 Sep 5;17(18):3768–3773. doi: 10.1021/bi00611a015. [DOI] [PubMed] [Google Scholar]
- Brooks J. L., Benson A. A. Studies on the structure of an ornithine-containing lipid from Rhodospirillum rubrum. Arch Biochem Biophys. 1972 Sep;152(1):347–355. doi: 10.1016/0003-9861(72)90224-x. [DOI] [PubMed] [Google Scholar]
- Clayton R. K., Haselkorn R. Protein components of bacterial photosynthetic membranes. J Mol Biol. 1972 Jul 14;68(1):97–105. doi: 10.1016/0022-2836(72)90265-3. [DOI] [PubMed] [Google Scholar]
- Collins M. L., Niederman R. A. Membranes of Rhodospirillum rubrum: isolation and physicochemical properties of membranes from aerobically grown cells. J Bacteriol. 1976 Jun;126(3):1316–1325. doi: 10.1128/jb.126.3.1316-1325.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAWSON R. M. A hydrolytic procedure for the identification and estimation of individual phospholipids in biological samples. Biochem J. 1960 Apr;75:45–53. doi: 10.1042/bj0750045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Downing D. T., Greene R. S. Rapid determination of double-bond positions in monoenoic fatty acids by periodate-permanganate oxidation. Lipids. 1968 Jan;3(1):96–100. doi: 10.1007/BF02530977. [DOI] [PubMed] [Google Scholar]
- GARBUS J., DELUCA H. F., LOOMANS M. E., STRONG F. M. The rapid incorporation of phosphate into mitochondrial lipids. J Biol Chem. 1963 Jan;238:59–63. [PubMed] [Google Scholar]
- GORCHEIN A. ORNITHINE IN RHODOPSEUDOMONAS SPHEROIDES. Biochim Biophys Acta. 1964 Jun 15;84:356–358. doi: 10.1016/0926-6542(64)90064-2. [DOI] [PubMed] [Google Scholar]
- Gibson K. D., Segen B. J., Niederman R. A. Membranes of Rhodopseudomonas spheroides. II. Precursor-product relations in anaerobically growing cells. Arch Biochem Biophys. 1972 Oct;152(2):561–568. doi: 10.1016/0003-9861(72)90251-2. [DOI] [PubMed] [Google Scholar]
- Goldfine H. Comparative aspects of bacterial lipids. Adv Microb Physiol. 1972;8:1–58. doi: 10.1016/s0065-2911(08)60187-3. [DOI] [PubMed] [Google Scholar]
- Harwood J. L., James A. T. Metabolism of trans-3-hexadecenoic acid in broad bean. Eur J Biochem. 1975 Jan 2;50(2):325–334. doi: 10.1111/j.1432-1033.1975.tb09807.x. [DOI] [PubMed] [Google Scholar]
- Harwood J. L., Stumpf P. K. Fat Metabolism in Higher Plants: XL. Synthesis of Fatty Acids in the Initial Stage of Seed Germination. Plant Physiol. 1970 Oct;46(4):500–508. doi: 10.1104/pp.46.4.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerber N. L., García A. F., Vernon L. P., Raveed D. Protein composition of intact and fractionated membranes isolated from dark and light grown cells of a blue green mutant of Rhodospirillum rubrum (BG 1 ). Biochim Biophys Acta. 1972 Jan 21;256(1):108–119. doi: 10.1016/0005-2728(72)90166-1. [DOI] [PubMed] [Google Scholar]
- Klein N. C., Mindich L. Isolation and characterization of a glycerol auxotroph of Rhodopseudomonas capsulata: effect of lipid synthesis on the synthesis of photosynthetic pigments. J Bacteriol. 1976 Oct;128(1):337–346. doi: 10.1128/jb.128.1.337-346.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klemme B., Klemme J. H., San Pietro A. PPase, ATPase, and photophosphorylation in chromatophores of Rhodospirillum rubrum: inactivation by phospholipase A; reconstitution by phospholipids. Arch Biochem Biophys. 1971 May;144(1):339–342. doi: 10.1016/0003-9861(71)90486-3. [DOI] [PubMed] [Google Scholar]
- LASCELLES J., SZILAGYI J. F. PHOSPHOLIPID SYNTHESIS BY RHODOPSEUDOMONAS SPHEROIDES IN RELATION TO THE FORMATION OF PHOTOSYNTHETIC PIGMENTS. J Gen Microbiol. 1965 Jan;38:55–64. doi: 10.1099/00221287-38-1-55. [DOI] [PubMed] [Google Scholar]
- LASCELLES J. The synthesis of porphyrins and bacteriochlorophyll by cell suspensions of Rhodopseudomonas spheroides. Biochem J. 1956 Jan;62(1):78–93. doi: 10.1042/bj0620078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lampe H. H., Drews G. Die Differenzierung des Membransystems von Rhodopseudomonas capsulata hinsichtlich seiner photosynthetischen und respiratorischen Funktionen. Arch Mikrobiol. 1972;84(1):1–19. [PubMed] [Google Scholar]
- Lueking D. R., Fraley R. T., Kaplan S. Intracytoplasmic membrane synthesis in synchronous cell populations of Rhodopseudomonas sphaeroides. Fate of "old" and "new" membrane. J Biol Chem. 1978 Jan 25;253(2):451–457. [PubMed] [Google Scholar]
- Niederman R. A., Mallon D. E., Langan J. J. Membranes of Rhodopseudomonas sphaeroides. IV. Assembly of chromatophores in low-aeration cell suspensions. Biochim Biophys Acta. 1976 Aug 13;440(2):429–447. doi: 10.1016/0005-2728(76)90076-1. [DOI] [PubMed] [Google Scholar]
- Oelze J., Drews G. Membranes of photosynthetic bacteria. Biochim Biophys Acta. 1972 Apr 18;265(2):209–239. doi: 10.1016/0304-4157(72)90003-2. [DOI] [PubMed] [Google Scholar]
- Radunz A. Uber das Sulfochinovosyl-diacylglycerin aus höheren Pflanzen, Algen und Purpurbakterien. Hoppe Seylers Z Physiol Chem. 1969 Apr;350(4):411–417. [PubMed] [Google Scholar]
- Russell N. J. The positional specificity of a desaturase in the psychrophilic bacterium Micrococcus cryophilus (ATCC 15174). Biochim Biophys Acta. 1978 Nov 22;531(2):179–186. doi: 10.1016/0005-2760(78)90141-8. [DOI] [PubMed] [Google Scholar]
- Schmitz R. Uber die Zusammensetzung der pigmenthaltigen Strukturen aus Prokaryonten. II. Untersuchungen an Chromatophoren von Chlorobium thiosulfatophilum Stamm Tassajara. Arch Mikrobiol. 1967 Mar 29;56(3):238–247. [PubMed] [Google Scholar]
- Schröder J., Biedermann M., Drews G. Die Fettsäuren in ganzen Zellen, Thylakoiden und Lipopolysacchariden von Rhodospirillum rubrum und Rhodopseudomonas capsulata. Arch Mikrobiol. 1969;66(3):273–280. [PubMed] [Google Scholar]
- Steiner S., Sejka G. A., Conti S. F., Gest H., Lester R. L. Modification of membrane composition in growing photosynthetic bacteria. Biochim Biophys Acta. 1970 Jun 2;203(3):571–574. doi: 10.1016/0005-2736(70)90194-x. [DOI] [PubMed] [Google Scholar]
- Wood B. J., Nichols B. W., James A. T. The lipids and fatty acid metabolism of photosynthetic bacteria. Biochim Biophys Acta. 1965 Oct 4;106(2):261–273. doi: 10.1016/0005-2760(65)90034-2. [DOI] [PubMed] [Google Scholar]
- Yamashita J., Kamen M. D. Observations on distribution of NADH oxidase in particles from dark-grown and light-grown Rhodospirillum rubrum. Biochem Biophys Res Commun. 1969 Feb 21;34(4):418–425. doi: 10.1016/0006-291x(69)90398-2. [DOI] [PubMed] [Google Scholar]
