Abstract
alpha- and beta-Chains were isolated by sequential ion-exchange and gel-filtration chromatography of guanidinium chloride-soluble dentine collagen obtained from Tris/NaCl-extracted EDTA-demineralized lathyritic-rat incisors. The alpha-chains were identified as alpha 1 I and alpha 2 by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and amino acid analysis of the intact chains and their CNBr peptides. The dentine alpha-chains exhibited higher lysine hydroxylation and phosphate content, but lower hydroxylysine glycosylation, than alpha-chains from skin. Increased lysine hydroxylation was observed in the helical sequences. The alpha 1 I/alpha 2 ratio was approx. 3:1, and was presumably due to the presence of (alpha 1 I)3 molecules along with (alpha 1 I)2 alpha 2 molecules as shown recently for neutral-salt-soluble dentine collagen [Wohllebe & Carmichael (1978) Eur. J. Biochem. 92, 183--188]. In the borohydride-reduced beta 11- and beta 12-chains from guanidinium chloride-soluble dentine collagen, the reduced cross-links hydroxylysinohydroxynorleucine and hydroxylysinonorleucine were present. A higher proportion of hydroxylysinonorleucine in the reduced beta 12-chain probably reflects differences in extent of hydroxylation of specific lysine residues of the alpha 1 I- and alpha 2-chains.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Butler W. T., Finch J. E., Jr, Desteno C. V. Chemical character of proteins in rat incisors. Biochim Biophys Acta. 1972 Jan 26;257(1):167–171. doi: 10.1016/0005-2795(72)90266-8. [DOI] [PubMed] [Google Scholar]
- Byers P. H., McKenney K. H., Lichtenstein J. R., Martin G. R. Preparation of type III procollagen and collagen from rat skin. Biochemistry. 1974 Dec 3;13(25):5243–5248. doi: 10.1021/bi00722a030. [DOI] [PubMed] [Google Scholar]
- Carmichael D. J., Chovelon A., Pearson C. H. The composition of the insoluble collagenous matrix of bovine predentine. Calcif Tissue Res. 1975 Jun 18;17(4):263–271. doi: 10.1007/BF02546599. [DOI] [PubMed] [Google Scholar]
- Carmichael D. J., Dodd C. M., Nawrot C. F. Studies on matrix proteins of normal and lathyritic rat bone and dentine. Calcif Tissue Res. 1974 Mar 29;14(3):177–194. doi: 10.1007/BF02060294. [DOI] [PubMed] [Google Scholar]
- Carmichael D. K., Veis A., Wang E. T. Dentin matrix collagen: evidence for a covalently linked phosphoprotein attachment. Calcif Tissue Res. 1971;7(4):331–344. doi: 10.1007/BF02062622. [DOI] [PubMed] [Google Scholar]
- Fietzek P. P., Kühn K. The primary structure of collagen. Int Rev Connect Tissue Res. 1976;7:1–60. doi: 10.1016/b978-0-12-363707-9.50007-1. [DOI] [PubMed] [Google Scholar]
- Furthmayr H., Timpl R. Characterization of collagen peptides by sodium dodecylsulfate-polyacrylamide electrophoresis. Anal Biochem. 1971 Jun;41(2):510–516. doi: 10.1016/0003-2697(71)90173-4. [DOI] [PubMed] [Google Scholar]
- Glimcher M. J., Hodge A. J., Schmitt F. O. MACROMOLECULAR AGGREGATION STATES IN RELATION TO MINERALIZATION: THE COLLAGEN-HYDROXYAPATITE SYSTEM AS STUDIED IN VITRO. Proc Natl Acad Sci U S A. 1957 Oct 15;43(10):860–867. doi: 10.1073/pnas.43.10.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Layman D. L., McGoodwin E. B., Martin G. R. The nature of the collagen synthesized by cultured human fibroblasts. Proc Natl Acad Sci U S A. 1971 Feb;68(2):454–458. doi: 10.1073/pnas.68.2.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mechanic G., Gallop P. M., Tanzer M. L. The nature of crosslinking in collagens from mineralized tissues. Biochem Biophys Res Commun. 1971 Nov 5;45(3):644–653. doi: 10.1016/0006-291x(71)90465-7. [DOI] [PubMed] [Google Scholar]
- Miller E. J. Isolation and characterization of a collagen from chick cartilage containing three identical alpha chains. Biochemistry. 1971 Apr 27;10(9):1652–1659. doi: 10.1021/bi00785a024. [DOI] [PubMed] [Google Scholar]
- Miller E. J., Martin G. R., Piez K. A., Powers M. J. Characterization of chick bone collagen and compositional changes associated with maturation. J Biol Chem. 1967 Dec 10;242(23):5481–5489. [PubMed] [Google Scholar]
- Miller E. J., Martin G. R. The collagen of bone. Clin Orthop Relat Res. 1968 Jul-Aug;59:195–232. [PubMed] [Google Scholar]
- Morgan P. H., Jacobs H. G., Segrest J. P., Cunningham L. W. A comparative study of glycopeptides derived from selected vertebrate collagens. A possible role of the carbohydrate in fibril formation. J Biol Chem. 1970 Oct 10;245(19):5042–5048. [PubMed] [Google Scholar]
- Nawrot C. F., Campbell D. J. A chromatographic study of the relative affinities of rat bone and skin collagen alpha1 chains for hydroxyapatite. J Dent Res. 1977 Aug;56(8):1017–1022. doi: 10.1177/00220345770560080401. [DOI] [PubMed] [Google Scholar]
- Nawrot C. F., Mittelstadt J. K., Kuo M. Chromatographic properties of denatured skin and bone collagens on hydroxyapatite. J Dent Res. 1976 Sep-Oct;55(5):841–847. doi: 10.1177/00220345760550052101. [DOI] [PubMed] [Google Scholar]
- Paz M. A., Henson E., Rombauer R., Abrash L., Blumenfeld O. O., Gallop P. M. Alpha-amino alcohols as products of a reductive side reaction of denatured collagen with sodium borohydride. Biochemistry. 1970 May 12;9(10):2123–2127. doi: 10.1021/bi00812a014. [DOI] [PubMed] [Google Scholar]
- Piez K. A. Molecular weight determination of random coil polypeptides from collagen by molecular sieve chromatography. Anal Biochem. 1968 Nov;26(2):305–312. doi: 10.1016/0003-2697(68)90342-4. [DOI] [PubMed] [Google Scholar]
- Rauterberg J. The C-terminal non-helical portion of the collagen molecule. Clin Orthop Relat Res. 1973 Nov-Dec;(97):196–212. doi: 10.1097/00003086-197311000-00027. [DOI] [PubMed] [Google Scholar]
- Robins S. P., Bailey A. J. Isolation and characterization of glycosyl derivatives of the reducible cross-links in collagens. FEBS Lett. 1974 Jan 15;38(3):334–336. doi: 10.1016/0014-5793(74)80085-2. [DOI] [PubMed] [Google Scholar]
- Royce P. M., Barnes M. J. Comparative studies on collagen glycosylation in chick skin and bone. Biochim Biophys Acta. 1977 Jun 23;498(1):132–142. doi: 10.1016/0304-4165(77)90094-0. [DOI] [PubMed] [Google Scholar]
- Scott P. G., Veis A. The cyanogen bromide peptides of bovine soluble and insoluble collagens. II. Tissue specific cross-linked peptides of insoluble skin and dentin collagen. Connect Tissue Res. 1976;4(2):117–129. doi: 10.3109/03008207609152207. [DOI] [PubMed] [Google Scholar]
- Stoltz M., Furthmayr H., Timpl R. Increased lysine hydroxylation in rat bone and tendon collagen and localization of the additional residues. Biochim Biophys Acta. 1973 Jun 15;310(2):461–468. doi: 10.1016/0005-2795(73)90130-x. [DOI] [PubMed] [Google Scholar]
- Tanzer M. L. Experimental lathyrism. Int Rev Connect Tissue Res. 1965;3:91–112. doi: 10.1016/b978-1-4831-6753-4.50009-0. [DOI] [PubMed] [Google Scholar]
- Toole B. P., Kang A. H., Trelstad R. L., Gross J. Collagen heterogeneity within different growth regions of long bones of rachitic and non-rachitic chicks. Biochem J. 1972 May;127(4):715–720. doi: 10.1042/bj1270715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VEIS A., SCHLUETER R. J. THE MACROMOLECULAR ORGANIZATION OF DENTINE MATRIX COLLAGEN. I. CHARACTERIZATION OF DENTINE COLLAGEN. Biochemistry. 1964 Nov;3:1650–1657. doi: 10.1021/bi00899a009. [DOI] [PubMed] [Google Scholar]
- Volpin D., Veis A. Cyanogen bromide peptides from insoluble skin and dentin bovine collagens. Biochemistry. 1973 Mar 27;12(7):1452–1464. doi: 10.1021/bi00731a028. [DOI] [PubMed] [Google Scholar]
- Wohllebe M., Carmichael D. J. Type-I trimer and type-I collagen in neutral-salt-soluble lathyritic-rat dentine. Eur J Biochem. 1978 Dec 1;92(1):183–188. doi: 10.1111/j.1432-1033.1978.tb12736.x. [DOI] [PubMed] [Google Scholar]
- Zimmermann B. K., Timpl R., Kühn K. Intermolecular cross-links of collagen. Participation of the carboxy-terminal nonhelical region of the 1-chain. Eur J Biochem. 1973 Jun;35(2):216–221. doi: 10.1111/j.1432-1033.1973.tb02828.x. [DOI] [PubMed] [Google Scholar]
