Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Jul 15;182(1):149–156. doi: 10.1042/bj1820149

Limited-turnover studies on proton translocation in reconstituted cytochrome c oxidase-containing vesicles.

R P Casey, J B Chappell, A Azzi
PMCID: PMC1161243  PMID: 40547

Abstract

We have investigated ferrocytochrome c-induced proton ejection from reconstituted cytochrome c oxidase-containing vesicles using careful control of the number of enzyme turnovers. Ferrocytochrome c caused the appearance of protons at the vesicle exterior, and this could be abolished by using a protonophore. In addition, its decay was dependent on the permeability of the vesicle membranes to protons and the number of turnovers of the oxidase. These observations indicate that the ejection of protons was the result of genuine translocation. The possibility of this translocation occurring via a Mitchellian loop as a result of the presence of a reduced hydrogen carrier contaminating the enzyme was considered and excluded. Proton-translocating activity in this reconstituted system depended critically on the ratio of enzyme to lipid used in the reconstitution process and we propose a rationale to account for this. We conclude that our data provide strong support for the proposal that cytochrome c oxidase acts as a proton pump and that approx. 0.9 H+ is excluded per ferrocytochrome c molecule oxidized.

Full text

PDF
149

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carroll R. C., Racker E. Preparation and characterization of cytochrome c oxidase vesicles with high respiratory control. J Biol Chem. 1977 Oct 25;252(20):6981–6990. [PubMed] [Google Scholar]
  2. Eytan G. D., Broza R. Role of charge and fluidity in the incorporation of cytochrome oxidase into liposomes. J Biol Chem. 1978 May 10;253(9):3196–3202. [PubMed] [Google Scholar]
  3. Eytan G. D., Carroll R. C., Schatz G., Racker E. Arrangement of the subunits in solubilized and membrane-bound cytochrome c oxidase from bovine heart. J Biol Chem. 1975 Nov 25;250(22):8598–8603. [PubMed] [Google Scholar]
  4. Hansen F. B., Miller M., Nicholls P. Control of respiration in proteoliposomes containing cytochrome aa3. I. Stimulation by valinomycin and uncoupler. Biochim Biophys Acta. 1978 Jun 8;502(3):385–399. doi: 10.1016/0005-2728(78)90072-5. [DOI] [PubMed] [Google Scholar]
  5. Hansen F. B., Nicholls P. Control of respiration in proteoliposomes containing cytochrome aa3. II. Inhibition by carbon monoxide and azide. Biochim Biophys Acta. 1978 Jun 8;502(3):400–408. doi: 10.1016/0005-2728(78)90073-7. [DOI] [PubMed] [Google Scholar]
  6. Henderson R., Capaldi R. A., Leigh J. S. Arrangement of cytochrome oxidase molecules in two-dimensional vesicle crystals. J Mol Biol. 1977 Jun 5;112(4):631–648. doi: 10.1016/s0022-2836(77)80167-8. [DOI] [PubMed] [Google Scholar]
  7. Hinkle P. C. Electron transfer across membranes and energy coupling. Fed Proc. 1973 Sep;32(9):1988–1992. [PubMed] [Google Scholar]
  8. Hinkle P. C., Kim J. J., Racker E. Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids. J Biol Chem. 1972 Feb 25;247(4):1338–1339. [PubMed] [Google Scholar]
  9. Hunter D. R., Capaldi R. A. Respiratory control in cytochrome oxidase. Biochem Biophys Res Commun. 1974 Feb 4;56(3):623–628. doi: 10.1016/0006-291x(74)90650-0. [DOI] [PubMed] [Google Scholar]
  10. Jasàitis A. A., Nemecek I. B., Severina I. I., Skulachev V. P., Smirnova S. M. Membrane potential generation by two reconstituted mitochondrial systems: liposomes inlayed with cytochrome oxidase or with ATPase. Biochim Biophys Acta. 1972 Sep 20;275(3):485–490. doi: 10.1016/0005-2728(72)90233-2. [DOI] [PubMed] [Google Scholar]
  11. Krab K., Wikström M. Proton-translocating cytochrome c oxidase in artificial phospholipid vesicles. Biochim Biophys Acta. 1978 Oct 11;504(1):200–214. doi: 10.1016/0005-2728(78)90018-x. [DOI] [PubMed] [Google Scholar]
  12. Moyle J., Mitchell P. Cytochrome c oxidase is not a proton pump. FEBS Lett. 1978 Apr 15;88(2):268–272. doi: 10.1016/0014-5793(78)80190-2. [DOI] [PubMed] [Google Scholar]
  13. Moyle J., Mitchell P. Measurements of mitochondrial comes from H+/O quotients: effects of phosphate and N-ethylmaleimide. FEBS Lett. 1978 Jun 15;90(2):361–365. doi: 10.1016/0014-5793(78)80405-0. [DOI] [PubMed] [Google Scholar]
  14. Papa S., Guerrieri F., Lorusso M. Mechanism of respiration-driven proton translocation in the inner mitochondrial membrane. Analysis of proton translocation associated to oxido-reductions of the oxygen-terminal respiratory carriers. Biochim Biophys Acta. 1974 Aug 23;357(2):181–192. doi: 10.1016/0005-2728(74)90059-0. [DOI] [PubMed] [Google Scholar]
  15. Salhany J. M., Swanson J. C. Kinetics of passive anion transport across the human erythrocyte membrane. Biochemistry. 1978 Aug 8;17(16):3354–3362. doi: 10.1021/bi00609a028. [DOI] [PubMed] [Google Scholar]
  16. Sigel E., Carafoli E. The proton pump of cytochrome c oxidase and its stoichiometry. Eur J Biochem. 1978 Aug 15;89(1):119–123. doi: 10.1111/j.1432-1033.1978.tb20903.x. [DOI] [PubMed] [Google Scholar]
  17. Skulachev V. P. Enzymic generators of membrane potential in mitochondria. Ann N Y Acad Sci. 1974 Feb 18;227:188–202. doi: 10.1111/j.1749-6632.1974.tb14384.x. [DOI] [PubMed] [Google Scholar]
  18. Sorgato M. C., Ferguson S. J. Measurements of the components of the protonmotive force generated by cytochrome oxidase in submitochondrial particles. FEBS Lett. 1978 Jun 1;90(1):178–182. doi: 10.1016/0014-5793(78)80324-x. [DOI] [PubMed] [Google Scholar]
  19. Vik S. B., Capaldi R. A. Lipid requirements for cytochrome c oxidase activity. Biochemistry. 1977 Dec 27;16(26):5755–5759. doi: 10.1021/bi00645a016. [DOI] [PubMed] [Google Scholar]
  20. Wikstrom M. K. Proton pump coupled to cytochrome c oxidase in mitochondria. Nature. 1977 Mar 17;266(5599):271–273. doi: 10.1038/266271a0. [DOI] [PubMed] [Google Scholar]
  21. Wikström M. K., Saari H. T. The mechanism of energy conservation and transduction by mitochondrial cytochrome c oxidase. Biochim Biophys Acta. 1977 Nov 17;462(2):347–361. doi: 10.1016/0005-2728(77)90133-5. [DOI] [PubMed] [Google Scholar]
  22. Wikström M. K. The principle of energy transduction in the cytochrome c oxidase region of the respiratory chain. Ann N Y Acad Sci. 1974 Feb 18;227:146–158. doi: 10.1111/j.1749-6632.1974.tb14378.x. [DOI] [PubMed] [Google Scholar]
  23. Wikström M., Krab K. Cytochrome c oxidase is a proton pump: a rejoinder to recent criticism. FEBS Lett. 1978 Jul 1;91(1):8–14. doi: 10.1016/0014-5793(78)80006-4. [DOI] [PubMed] [Google Scholar]
  24. YONETANI T. Studies on cytochrome oxidase. III. Improved preparation and some properties. J Biol Chem. 1961 Jun;236:1680–1688. [PubMed] [Google Scholar]
  25. Yonetani T. Studies on cytochrome c peroxidase. II. Stoichiometry between enzyme, H2O2, and ferrocytochrome c and enzymic determination of extinction coefficients of cytochrome c. J Biol Chem. 1965 Nov;240(11):4509–4514. [PubMed] [Google Scholar]
  26. Yu C., Yu L., King T. E. Studies on cytochrome oxidase. Interactions of the cytochrome oxidase protein with phospholipids and cytochrome c. J Biol Chem. 1975 Feb 25;250(4):1383–1392. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES