Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Aug 15;182(2):455–464. doi: 10.1042/bj1820455

Stimulation of mitochondrial calcium ion efflux by thiol-specific reagents and by thyroxine. The relationship to adenosine diphosphate retention and to mitochondrial permeability.

E J Harris, M Al-Shaikhaly, H Baum
PMCID: PMC1161327  PMID: 41519

Abstract

Respiring rat heart mitochondria were loaded with Ca2+ and then treated with Ruthenium Red. The factors affecting the subsequent Ca2+-efflux were studied. Addition of rotenone or antimycin led to a decline of efflux except at pH values above 7.2, provided the load was less than about 80 nmol per mg of protein. Oligomycin reversed the effect of the respiratory inhibitors. Independently of respiration, efflux was stimulated by the uncoupler trifluoromethyltetrachlorbenzimadazole, by mersalyl and by thyroid hormones. The stimulated efflux could be diminished by ADP, with Mg2+ as cofactor if efflux was rapid. With respiration in progress, efflux could be stimulated by N-ethylmaleimide and 5,5'-dithiobis-(2-nitrobenzoate). The effects of mersalyl and of thyroid hormones could be diminished with dithiothreitol. In the absence of stimulating agents, the Ca2+ efflux was proportional to the load up to some critical amount, this critical amount was decreased by the agents. Thyroxine and mersalyl caused not only loss of Ca2+, but also simultaneous, but not necessarily proportional, loss of internal adenine nucleotides. Both efflux rates were kept at a low value by bongkrekic acid added before the stimulating agent. It is concluded that Ca2+ efflux is a measure of a permeability controlled by the binding of ADP (an Mg2+) to the inner membrane, and that this in turn depends on the maintenance of certain thiol gropus in a reduced form by a reaction that uses NADH and ATP and the energy-linked transhydrogenase.

Full text

PDF
455

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerman K. E., Saris N. E., Järvisalo J. O. Mitochondrial "high-affinity" binding sites for Ca2+ - fact or artefact? Biochem Biophys Res Commun. 1974 Jun 4;58(3):801–807. doi: 10.1016/s0006-291x(74)80488-2. [DOI] [PubMed] [Google Scholar]
  2. Al-Shaikhaly M. H., Baum H. Associated effluxes of calcium and adenine nucleotides from mitochondria: mediation by throxine and other agents, and inhibition by bongkrekic acid and adenosine diphosphate [proceedings]. Biochem Soc Trans. 1979 Feb;7(1):215–216. doi: 10.1042/bst0070215. [DOI] [PubMed] [Google Scholar]
  3. Al-Shaikhaly M. M., Baum H. Do mercurials and thyroxine potentiate calcium-dependent phospholipase activity in mitochondria? [proceedings]. Biochem Soc Trans. 1977;5(4):1093–1095. doi: 10.1042/bst0051093. [DOI] [PubMed] [Google Scholar]
  4. Brierley G. P. The uptake and extrusion of monovalent cations by isolated heart mitochondria. Mol Cell Biochem. 1976 Jan 31;10(1):41–63. doi: 10.1007/BF01731680. [DOI] [PubMed] [Google Scholar]
  5. Bryla J., Harris E. J., Plumb J. A. The stimulatory effect of glucagon and dibutyryl cyclic AMP on ureogenesis and gluconeogenesis in relation to the mitochondrial ATP content. FEBS Lett. 1977 Aug 15;80(2):443–448. doi: 10.1016/0014-5793(77)80494-8. [DOI] [PubMed] [Google Scholar]
  6. Bygrave F. L., Tranter C. J. The subcellular location, maturation and response to increased plasma glucagon of ruthenium red-insensitive calcium-ion transport in rat liver. Biochem J. 1978 Sep 15;174(3):1021–1030. doi: 10.1042/bj1741021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CARAFOLI E. ACTIVE ACCUMULATION OF SR2+ BY RAT-LIVER MITOCHONDRIA. II. COMPETITION BETWEEN CA2+ AND SR2+. Biochim Biophys Acta. 1965 Jan 4;97:99–106. doi: 10.1016/0304-4165(65)90273-4. [DOI] [PubMed] [Google Scholar]
  8. CARAFOLI E., ROSSI C. S., LEHNINGER A. L. UPTAKE OF ADENINE NUCLEOTIDES BY RESPIRING MITOCHONDRIA DURING ACTIVE ACCUMULATION OF CA++ AND PHOSPHATE. J Biol Chem. 1965 May;240:2254–2261. [PubMed] [Google Scholar]
  9. CARAFOLI E., WEILAND S., LEHNINGER A. L. ACTIVE ACCUMULATION OF SR2+ BY RAT-LIVER MITOCHONDRIA. I. GENERAL FEATURES. Biochim Biophys Acta. 1965 Jan 4;97:88–98. doi: 10.1016/0304-4165(65)90272-2. [DOI] [PubMed] [Google Scholar]
  10. Chen J. L., Babcock D. F., Lardy H. A. Norepinephrine, vasopressin, glucagon, and A23187 induce efflux of calcium from an exchangeable pool in isolated rat hepatocytes. Proc Natl Acad Sci U S A. 1978 May;75(5):2234–2238. doi: 10.1073/pnas.75.5.2234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DRAHOTA Z., CARAFOLI E., ROSSI C. S., GAMBLE R. L., LEHNINGER A. L. THE STEADY STATE MAINTENANCE OF ACCUMULATED CA++ IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2712–2720. [PubMed] [Google Scholar]
  12. Harris E. J. Anion/calcium ion ratios and proton production in some mitochondrial calcium ion uptakes. Biochem J. 1978 Dec 15;176(3):983–991. doi: 10.1042/bj1760983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harris E. J., Berent C. Calcium ion-induced uptakes and transormations of substrates in liver mitochondria. Biochem J. 1969 Dec;115(4):645–652. doi: 10.1042/bj1150645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harris E. J. Mitochondrial ion movements with special reference to calcium ions and heart mitochondria. Biochem Soc Trans. 1979 Aug;7(4):770–775. doi: 10.1042/bst0070770. [DOI] [PubMed] [Google Scholar]
  15. Harris E. J. Modulation of Ca2+ efflux from heart mitochondria. Biochem J. 1979 Mar 15;178(3):673–680. doi: 10.1042/bj1780673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Harris E. J. The uptake and release of calcium by heart mitochondria. Biochem J. 1977 Dec 15;168(3):447–456. doi: 10.1042/bj1680447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Herd P. A. Thyroid hormone-divalent cation interactions. Effect of thyroid hormone on mitochondrial calcium metabolism. Arch Biochem Biophys. 1978 May;188(1):220–225. doi: 10.1016/0003-9861(78)90375-2. [DOI] [PubMed] [Google Scholar]
  18. Hunter D. R., Haworth R. A., Southard J. H. Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem. 1976 Aug 25;251(16):5069–5077. [PubMed] [Google Scholar]
  19. LEHNINGER A. L., RAY B. L., SCHNEIDER M. The swelling of rat liver mitochondria by thyroxine and its reversal. J Biophys Biochem Cytol. 1959 Jan 25;5(1):97–108. doi: 10.1083/jcb.5.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Leblanc P., Clauser H. ADP and Mg2+ requirement for Ca2+ accumulation by hog heart mitochondria. Correlation with energy coupling. Biochim Biophys Acta. 1974 Apr 23;347(1):87–101. doi: 10.1016/0005-2728(74)90202-3. [DOI] [PubMed] [Google Scholar]
  21. Leblanc P., Clauser H. Study of the mitochondrial phosphate carrier in the course of calcium phosphate accumulation: a requirement for Mg2+ and ADP of its sensitivity to thiol reagents. Biochim Biophys Acta. 1974 May 22;347(2):193–201. doi: 10.1016/0005-2728(74)90044-9. [DOI] [PubMed] [Google Scholar]
  22. Lee N. M., Wiedemann I., Kun E. Control of cation movements in liver mitochondria by a cytoplasmic factor. Biochem Biophys Res Commun. 1971 Mar 19;42(6):1030–1034. doi: 10.1016/0006-291x(71)90007-6. [DOI] [PubMed] [Google Scholar]
  23. Lehninger A. L., Vercesi A., Bababunmi E. A. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1690–1694. doi: 10.1073/pnas.75.4.1690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lofrumento N. E., Zanotti F. Calcium release induced by N-ethylmaleimide in rat liver mitochondria. FEBS Lett. 1978 Mar 15;87(2):186–190. doi: 10.1016/0014-5793(78)80328-7. [DOI] [PubMed] [Google Scholar]
  25. Peng C. F., Straub K. D., Kane J. J., Murphy M. L., Wadkins C. L. Effects of adenine nucleotide translocase inhibitors on dinitrophenol-induced Ca2+ efflux from pig heart mitochondria. Biochim Biophys Acta. 1977 Nov 17;462(2):403–413. doi: 10.1016/0005-2728(77)90138-4. [DOI] [PubMed] [Google Scholar]
  26. Pollak J. K. The interdependence of mitochondrial maturation and glycogen metabolism in perinatal rat liver. Biochem Soc Trans. 1977;5(1):341–348. doi: 10.1042/bst0050341. [DOI] [PubMed] [Google Scholar]
  27. ROSSI C. S., LEHNINGER A. L. STOICHIOMETRY OF RESPIRATORY STIMULATION, ACCUMULATION OF CA++ AND PHOSPHATE, AND OXIDATIVE PHOSPHORYLATION IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1964 Nov;239:3971–3980. [PubMed] [Google Scholar]
  28. Reed K. C., Bygrave F. L. A re-evaluation of energy-independent calcium-ion binding by rat liver mitochondria. Biochem J. 1974 Sep;142(3):555–566. doi: 10.1042/bj1420555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Southard J. H., Green D. E. High affinity binding of Ca++ in mitochondria: a reappraisal. Biochem Biophys Res Commun. 1974 Jul 10;59(1):30–37. doi: 10.1016/s0006-291x(74)80169-5. [DOI] [PubMed] [Google Scholar]
  30. Stoner C. D., Sirak H. D. Adenine nucleotide-induced contraction of the inner mitochondrial membrane. I. General characterization. J Cell Biol. 1973 Jan;56(1):51–64. doi: 10.1083/jcb.56.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stoner C. D., Sirak H. D. Adenine nucleotide-induced contraction on the inner mitochondrial membrane. II. Effect of bongkrekic acid. J Cell Biol. 1973 Jan;56(1):65–73. doi: 10.1083/jcb.56.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vallières J., Scarpa A., Somlyo A. P. Subcellular fractions of smooth muscle. Isolation, substrate utilization and Ca++ transport by main pulmonary artery and mesenteric vein mitochondria. Arch Biochem Biophys. 1975 Oct;170(2):659–669. doi: 10.1016/0003-9861(75)90162-9. [DOI] [PubMed] [Google Scholar]
  33. Vignais P. V., Vignais P. M. Effect of SH reagents on atractyloside binding to mitochondria and ADP translocation. Potentiation by ADP and its prevention by uncoupler FCCP. FEBS Lett. 1972 Oct 1;26(1):27–31. doi: 10.1016/0014-5793(72)80534-9. [DOI] [PubMed] [Google Scholar]
  34. Vinogradov A., Scarpa A., Chance B. Calcium and pyridine nucleotide interaction in mitochondrial membranes. Arch Biochem Biophys. 1972 Oct;152(2):646–654. doi: 10.1016/0003-9861(72)90261-5. [DOI] [PubMed] [Google Scholar]
  35. WOJTCZAK L., LEHNINGER A. L. Formation and disappearance of an endogenous uncoupling factor during swelling and contraction of mitochondria. Biochim Biophys Acta. 1961 Aug 19;51:442–456. doi: 10.1016/0006-3002(61)90600-x. [DOI] [PubMed] [Google Scholar]
  36. Weidemann M. J., Erdelt H., Klingenberg M. Effect of bongkrekic acid on the adenine nucleotide carrier in mitochondria: tightening of adenine nucleotide binding and differentiation between inner and outer sites. Biochem Biophys Res Commun. 1970 May 11;39(3):363–370. doi: 10.1016/0006-291x(70)90585-1. [DOI] [PubMed] [Google Scholar]
  37. Yamazaki R. K. Glucagon stimulation of mitochondrial respiration. J Biol Chem. 1975 Oct 10;250(19):7924–7930. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES