Skip to main content
Journal of Extracellular Vesicles logoLink to Journal of Extracellular Vesicles
. 2024 Dec 3;13(12):e70005. doi: 10.1002/jev2.70005

Extracellular vesicles, RNA sequencing, and bioinformatic analyses: Challenges, solutions, and recommendations

Rebecca T Miceli 1, Tzu‐Yi Chen 1, Yohei Nose 2,3, Swapnil Tichkule 4, Briana Brown 1, John F Fullard 4,5,6,7, Marilyn D Saulsbury 8, Simon O Heyliger 8, Sacha Gnjatic 2,3,9, Natasha Kyprianou 1,3,10, Carlos Cordon‐Cardo 1, Susmita Sahoo 9,11, Emanuela Taioli 12,13, Panos Roussos 4,5,6,7,14,15, Gustavo Stolovitzky 5,16, Edgar Gonzalez‐Kozlova 2,3,, Navneet Dogra 1,5,17,18,
PMCID: PMC11613500  PMID: 39625409

Abstract

Extracellular vesicles (EVs) are heterogeneous entities secreted by cells into their microenvironment and systemic circulation. Circulating EVs carry functional small RNAs and other molecular footprints from their cell of origin, and thus have evident applications in liquid biopsy, therapeutics, and intercellular communication. Yet, the complete transcriptomic landscape of EVs is poorly characterized due to critical limitations including variable protocols used for EV‐RNA extraction, quality control, cDNA library preparation, sequencing technologies, and bioinformatic analyses. Consequently, there is a gap in knowledge and the need for a standardized approach in delineating EV‐RNAs. Here, we address these gaps by describing the following points by (1) focusing on the large canopy of the EVs and particles (EVPs), which includes, but not limited to – exosomes and other large and small EVs, lipoproteins, exomeres/supermeres, mitochondrial‐derived vesicles, RNA binding proteins, and cell‐free DNA/RNA/proteins; (2) examining the potential functional roles and biogenesis of EVPs; (3) discussing various transcriptomic methods and technologies used in uncovering the cargoes of EVPs; (4) presenting a comprehensive list of RNA subtypes reported in EVPs; (5) describing different EV‐RNA databases and resources specific to EV‐RNA species; (6) reviewing established bioinformatics pipelines and novel strategies for reproducible EV transcriptomics analyses; (7) emphasizing the significant need for a gold standard approach in identifying EV‐RNAs across studies; (8) and finally, we highlight current challenges, discuss possible solutions, and present recommendations for robust and reproducible analyses of EVP‐associated small RNAs. Overall, we seek to provide clarity on the transcriptomics landscape, sequencing technologies, and bioinformatic analyses of EVP‐RNAs. Detailed portrayal of the current state of EVP transcriptomics will lead to a better understanding of how the RNA cargo of EVPs can be used in modern and targeted diagnostics and therapeutics. For the inclusion of different particles discussed in this article, we use the terms large/small EVs, non‐vesicular extracellular particles (NVEPs), EPs and EVPs as defined in MISEV guidelines by the International Society of Extracellular Vesicles (ISEV).

Keywords: bioinformatics, EVs, extracellular vesicles, long‐read sequencing, short‐read sequencing, small RNA, transcriptomics


Overview of the RNA landscape of EVPs. Most commonly studied small EVP subtypes ranging from a diameter of ~1 nm to > 200 nm (top), and the most common types of RNA found within EVPs ranging from miRNA, piRNA, tRNA, snRNA, YRNA, circRNA, snoRNA, lncRNAs, mRNA, and rRNA (bottom).

graphic file with name JEV2-13-e70005-g003.jpg

1. INTRODUCTION

All cells secrete heterogeneous micro‐/nano‐scaled extracellular vesicles (EVs) as part of regular homoeostasis, intercellular communication and cargo disposal (Dalton, 1975; Krishn et al., 2020; Soleymani et al., 2023; Tkach & Théry, 2016; Trams et al., 1981; Valadi et al., 2007). EVs are in blood, urine, cerebrospinal fluid, cell culture media and a variety of other fluids (Chen et al., 2022; Lucien et al., 2023; Sandau et al., 2024; Théry et al., 2018). Recent evidence shows that EVs encapsulate small (∼15–200 nucleotides (nt)) functional RNAs (Bellingham et al., 2012; Crescitelli et al., 2021; Driedonks & Nolte‐T'Hoen, 2019; Lässer et al., 2011; Skog et al., 2008; Valadi et al., 2007), which can serve as extracellular messengers and induce recipient cells to change their behaviour (Alem et al., 2021; Krishn et al., 2020; Lässer et al., 2011; Morello et al., 2013; Sharma, 2014; Valadi et al., 2007). Consequently, EVs and their RNA molecules are being recognized as a ‘messenger of the cell’ (Bellingham et al., 2012; Eldh et al., 2012; Kalluri & LeBleu, 2020; Valadi et al., 2007). These findings have resulted in major large‐scale transcriptomic efforts (such as the NIH‐funded extracellular RNA communication [exRNA] consortium [ERCC]) to delineate exRNA from various cells, disease types and biofluids (Everaert et al., 2019; Lucien et al., 2023; Murillo et al., 2019; Rozowsky et al., 2019; Srinivasan et al., 2019; Srinivasan et al., 2019). Recent literature has shown that EVPs carry distinct small RNA transcriptional cargo from their cell of origin (Chen et al., 2022), including miRNA (Bellingham et al., 2012; Chand et al., 2021; Valadi et al., 2007), tRNA (Chen et al., 2022; Shurtleff et al., 2017), circular RNA (Li et al., 2015), long non‐coding RNA (Wei et al., 2017), Y RNA (Chen et al., 2022; Shurtleff et al., 2017), fragmented or whole messenger RNA (Wei et al., 2017) and unannotated dark matter RNA (Dogra et al. 2024). Subsequently, a large subset of EV‐associated small RNAs have been reported as potential biomarkers (Chen et al., 2022; Chen et al., 2023; Gaglani et al., 2021; Ho et al., 2022; Urabe et al., 2020), therapeutic mediators (Gaglani et al., 2021; Lässer et al., 2011; Li et al., 2023) and post‐translational regulators of gene expression (Aday et al., 2021; Alem et al., 2021; Chen et al., 2018; Gaglani et al., 2021; Khadka et al., 2023; Li et al., 2023).

Recent advances in EV isolation and sequencing technologies have enhanced our ability to investigate the role of extracellular transcriptomes in fundamental biology, extracellular communication and liquid biopsy‐based diagnostics (Athota et al., 2023; Reátegui et al., 2018; Smith et al., 2018; Wei et al., 2017). Importantly, with major advances in next‐generation sequencing technologies and novel computational tools (Figure 1), it is now possible to study the complete transcriptome, providing an unparalleled opportunity to assess the largely uncharacterized EV‐RNA subtypes (Abrams et al., 2019; Joo et al., 2019; Lu et al., 2018). However, current sequencing technologies and protocols are tailored to cellular RNAs and fail to accurately process and extract meaningful information from EV‐RNAs (Murillo et al., 2019; Rozowsky et al., 2019). Recent studies have identified critical limitations, including variable protocols used for EV‐RNA extraction, quality control, cDNA library preparation, sequencing technologies and bioinformatic analyses (suboptimal alignment of short reads (20–50 nt), a high number of multimapping reads, missing genomic annotation) and poor molecular cargo understanding (Chen et al., 2022; Cheng & Hill, 2022; Hoshino et al., 2020; Murillo et al., 2019; Santos & Almeida, 2021; Tesovnik et al., 2021; Vasconcelos et al., 2019; Wei et al., 2017). To date, there is a gap in knowledge for a gold standard approach to identifying small RNAs associated with EVs for better cross‐comparison between studies (Murillo et al., 2019; Srinivasan et al., 2019). To address these challenges, novel approaches and extensive benchmarking of current technologies are needed, along with the urgent development of robust, reproducible, open‐access and user‐friendly methods for EV diagnostics, quality control, and analysis.

FIGURE 1.

FIGURE 1

A summary of experimental and computation tools used for EV and RNA isolation and transcriptomic analysis of small RNAs from extracellular vesicles and particles. Current obstacles within each section are highlighted in red and discussed in Section 8. DG, density gradient; nanoDLD, nanofluidic deterministic lateral displacement; SEC, size exclusion chromatography; UC, ultracentrifugation.

In this review article, we seek to provide clarity on the transcriptomics landscape of EVs through an in‐depth analysis of EV biogenesis, their small RNAs landscape and the use of several transcriptomics technologies, including single‐EV omics. Notably, we not only focus on exosomes (a subset of small EVs) but include a large canopy of the extracellular vesicles and particles (EVPs), which includes, but is not limited to – large EVs (Antonyak et al., 2011; Keerthikumar et al., 2015; Kyprianou et al., 1990), small EVs (Soleymani et al., 2023; Trams et al., 1981), lipoproteins (HDL, LDL, VLDLs, ILDL and chylomicrons) (Hirowatari et al., 2008; Lutomski et al., 2018; Schneider et al., 1982), exomeres/supermeres (Zhang et al., 2018; Zhang et al., 2021), mitochondrial‐derived vesicles (Miller et al., 2022; Popov, 2022), RNA binding proteins/ribonucleic proteins (Boivin et al., 2019; Driedonks & Nolte‐T'Hoen, 2019; Jeon et al., 2022; Ripin & Parker, 2023; Schieweck et al., 2018; Wei et al., 2017) and cell‐free DNA/RNA/proteins (Murillo et al., 2019; Vagner et al., 2018; Vorperian et al., 2022). Finally, we seek to further understand the novel mechanisms and distinct cargo loading with these EVPs, and to enhance their uses as therapeutic delivery vehicles, and in liquid‐biopsy biomarker applications. Overall, we identify current challenges and provide recommendations for more cohesive RNA transcriptomics of EVPs for future studies (Dogra et al., 2021). We hope that through detailed descriptions of the current state of the art in EVP transcriptomics, we will better understand how the RNA cargo of small EVPs can be used across studies in modern and targeted diagnostics and therapeutics. Finally, our previous work on EVs (Chen et al., 2022; Chen et al., 2023; Murillo et al., 2019; Smith et al., 2018; Soleymani et al., 2023; Von Felden et al., 2022) and their transcriptomic analyses have laid the foundation of the presented work in this manuscript.

2. CANOPY OF DIVERSE EXTRACELLULAR VESICLES AND PARTICLES

The nomenclature and classification of EVPs (Table 1) are still under intense debate, and even the purest vesicle isolates can remain heterogeneous by current purification techniques (Théry et al., 2018; Welsh et al., 2024). The recent MISEV 2023 guidelines have reported quick‐reference EV nomenclature‐related terms (Welsh et al., 2024). Presently, a broad consensus classifies EVPs into three main classes based on the differences in their size, formation mechanism and content (Jeppesen et al., 2019; Royo et al., 2020; Théry et al., 2018; Witwer et al., 2013). Herein, we briefly discuss each EVP subtype, their biogenesis (Figure 2) and reported identification markers (Table 1). Finally, for the purpose of inclusion of different particles, we have used the terms EVs, EVPs and NVEPs as defined by the International Society of Extracellular Vesicles (ISEV) (Théry et al., 2018; Welsh et al., 2024).

TABLE 1.

A comparison of molecular weight (kDa); zeta potential (mV); density (g/mL); diameter (nm); commonly reported markers and encapsulated RNAs for large EVs, small EVs, small EPs), very‐low‐density lipoproteins (VLDLs), low‐density lipoproteins (LDLs) and high‐density lipoproteins (HDLs).

Large EVs Small EVs Small EPs
Reported as: ectosomes, microvesicles, large EVs, etc. Reported as: apoptotic bodies, large EVs, etc. Reported as: exosomes, small EVs, etc. Reported as: mitochondrial‐derived vesicles Exomeres Supermeres Midbody particles Lipoproteins
Mol. weight (kDa) >5*107 Not reported >5*105 Not reported Not reported Not reported Not reported 50–8*104
Zeta potential (mV) −25 to −30 Not reported −15 ± 1.3 Not reported
Not reported Not reported Not reported −10 to −27
Density (g/mL) >1.2 ∼1.2 ∼1.1 Not reported ∼1.2 Not reported ∼1.3 ∼1 (VLDL), ∼1 (LDL), ∼1.1 (HDL)
Diameter (nm) 50–2000 800– 5000 ∼30–200 70–150 ∼40–70 <50 200–600 5–90
Reported markers Actin, Gapdh, PKM, HSP, KIF23, RACGAO, CSE1L, ARF6, TSP, C3b and EMMPRIN Annexin V positivity, phosphatidyl serine, Calnexin (CANX), Grp94 (HSP90B1), GM130 (GOLGA2), cytochrome C (CYC1), TOMM20, thrombospondin (TSP) and C3b CD9/63/81, ALIX, TSG101, RAB, clathrin, flotillin, actin, HSC70, Hsp90, Hsp20, integrins, moesin, beta‐2‐microglobulin TOMM20, ATP5A, MTCOI, NDUFB8, PDH, encapsulated mtDNA CD9/63/81, HSPA8/1A, HSP90AB1, ACT, TUB, GAPDH, TGFBI, VPS35/29/26A, HSPA13, and HSP90 CRIK, prominin‐1, α‐tubulin, MKLP1 and RACGAP1 Apo‐B100 CI, CII, AII,
Encapsulated RNAs miRNA, mRNA, lncRNA, dsRNA rRNAs, mtRNA mRNAs, miRNAs mtDNA mRNA, miRNAs exRNA, miR‐1246 mRNA exRNA
References Théry et al. (2018), Morello et al. (2013), Keerthikumar et al. (2015), Antonyak et al. (2011), Welsh et al. (2024), Raposo and Stoorvogel. (2013), Akers et al. (2013), Colombo et al. (2014), Muralidharan‐Chari et al. (2010), Abels and Breakefield (2016) Théry et al. (2018), Welsh et al. (2024), Akers et al. (2013), Colombo et al. (2014), Pavlyukov et al. (2018), Sork et al. (2018) Soleymani et al. (2023), Tkach and Théry. (2016), Théry et al. (2018), Urabe et al. (2020), Welsh et al. (2024), Veziroglu and Mias. (2020), Zhang et al. (2020), Abramowicz and Story (2020), Kostyushev et al. (2020), Vader et al. (2016) Théry et al. (2018), Popov. (2022), Miller et al. (2022), Welsh et al. (2024), Picca et al. (2023), D'Acunzo et al. (2021), Heyn et al. (2023), Guan et al. (2021) Soleymani et al. (2023), Zhang et al. (2018), Zhang et al. (2021), Jeppesen et al. (2019), Royo et al. (2020), Zhang et al. (2019), Zhang et al. (2023) Soleymani et al. (2023), Zhang et al. (2018), Zhang et al. (2021), Zhang et al. (2023) Rai et al. (2021), Dubreuil et al. (2007), Arai et al. (2015), Park et al. (2023), Farmer et al. (2023) Soleymani et al. (2023), Schneider et al. (1982), Hirowatari et al. (2008), Lutomski et al. (2018), Feingold (2024), Liangsupree et al. (2021)

FIGURE 2.

FIGURE 2

The biogenesis of various EVP subtypes, including exosomes, exomeres, supermeres and mitochondrial‐derived vesicles. Multivesicular bodies (MVB) are specialized ‘late’ endosomes derived from the plasma membrane that are sorted for lysosomal degradation or recycling via the Golgi apparatus. Intraluminal vesicles (ILVs) are formed when the membrane of the MVBs folds inward towards the lumen and leads to the budding of vesicles into the MVB lumen. ILVs may be transported to the plasma membranes and released extracellularly as exosomes. Mitochondria‐derived vesicles (MDVs) are formed under normal physiological or stress‐related conditions. During oxidative stress, the mitochondria may shed oxidized membrane proteins or damaged proteins through the budding off the damaged segments of the mitochondrial membrane for eventual degradation. Exomeres and supermeres are small (<50 nm) non‐membranous particles containing lipids, nucleic acids and proteins that are co‐isolated with small EVs from unknown biogenesis pathways.

Large EVs are primarily characterized as plasma membrane (PM)‐derived vesicles formed by the outward budding of the PM (Kalluri & LeBleu, 2020; Raposo & Stoorvogel, 2013). Such EVs are broadly defined as >200 nm in diameter and enriched with PM markers. Frequently used large vesicle markers necessary for the differentiation of large EVs from small EVs and particles are listed in Table 1. Apoptotic bodies typically carry nuclear fragments and cellular organelles, often from damaged or dying cells (Akers et al., 2013; Théry et al., 2018; Yu et al., 2023). Typical markers for apoptotic bodies are included in Table 1.

Small EVs biogenesis has been observed via two mechanisms: (a) an endosome fusion with PM (Pegtel & Gould, 2019), and (b) via the outward budding of the PM (Raposo & Stoorvogel, 2013). Small EVs are generally classified as ∼50–200 nm in diameter. Exosomes are a very commonly studied EVP (Fevrier et al., 2004; Johnstone et al., 1987; Trams et al., 1981). First described in the 1980s (Pan & Johnstone, 1983; Trams et al., 1981), exosomes are defined as small (∼30–200 nm) (Table 1 and Figure 3), cup‐shaped vesicles generated through the formation of multivesicular bodies (MVBs), which contain intraluminal vesicles (ILVs) (Trams et al., 1981; Johnstone et al., 1987) (Figure 2). As an MVB fuses with the PM, ILVs are released as exosomes into the extracellular space by exocytosis (Soleymani et al., 2023; Kalluri & LeBleu, 2020; Akers et al., 2013). Exosome cargo loading is initiated by the endosomal sorting complex (ESCRT), beginning in the early endosome, and continuing into the late endosome which contains ILVs marked with ubiquitinylated cargoes (Vietri et al., 2020; Kowal et al., 2014). Common cargoes include RNAs, DNAs, lipids and proteins packaged from the host cell (Valadi et al., 2007; Soleymani et al., 2023; Skog et al., 2008; Yu et al., 2022; Ludwig et al., 2019; Simpson et al., 2009). Typical exosome markers are defined in Table 1 (Théry et al., 2018; Popov, 2022; Welsh et al., 2024; Veziroglu & Mias, 2020; Colombo et al., 2014; Picca et al., 2023). Recently, small mitochondrial‐derived vesicles (70–150 nm) (Table 1) have been identified as derivatives from basal or stress‐related mitochondrial origin (Figure 2) (Popov, 2022; Miller et al., 2022; Picca et al., 2023; D'Acunzo et al., 2021; Heyn et al., 2023). Additionally, mitochondrial‐derived vesicles with cargoes from the outer membrane (lipopolysaccharides, peptidoglycans and cytosol) (Kaparakis‐Liaskos & Ferrero, 2015) and inner membrane (DNA, cytoplasmic and inner membrane proteins, and ATP) (Perez‐Cruz et al., 2013; Perez‐Cruz et al., 2015) constituents have been identified. Typical markers for mitochondrial‐derived vesicles are included in Table 1.

FIGURE 3.

FIGURE 3

Overview of the RNA landscape of EVPs. Most commonly studied small EVP subtypes ranging from a diameter of ∼1 nm to >200 nm (top), and the most common types of RNA found within EVPs ranging from miRNA, piRNA, tRNA, snRNA, YRNA, circRNA, snoRNA, lncRNAs, mRNA and rRNA (bottom).

Finally, small (sub‐50 nm) non‐vesicular extracellular particles (NVEPs) are a subset of EVPs that have gained much attention recently (Zhang et al., 2021; Zhang et al., 2023; Rai et al., 2021), mainly due to the unique cargo associated with them and the novel isolation technologies used to isolate such small particles (Zhang et al., 2019; Zhang et al., 2023). Such examples include exomeres (Zhang et al., 2023), supermeres (Zhang et al., 2021) and midbody particles (Rai et al., 2021). Exomeres (Zhang et al., 2023) and supermeres (Zhang et al., 2021) were recently discovered and are disqualified from EV‐status due to the lack of a lipid bilayer (Théry et al., 2018). Instead, exomeres are small (<50 nm) non‐membranous particles containing lipids, nucleic acids and proteins that are co‐isolated with small EVs from unknown biogenesis pathways (Figure 2) (Soleymani et al., 2023; Zhang et al., 2019). The function and biogenesis of exomeres, supermeres and midbody particles are largely unknown and future studies are necessary to further define this EVP sub‐type (Zhang et al., 2019; Zhang et al., 2023; Rai et al., 2021).

In the 1960s, the more heavily studied non‐membrane‐bound particles called ribonucleoproteins (RNPs) or RNP granules were discovered (Rendi & Hultin, 1960). RNPs are membrane‐less intracellular RNA‐protein assemblies found in cells, including the nucleolus (Ripin & Parker, 2023). RNPs have been linked to the loading processes of RNA into EVs, including argonaute proteins (Jeppesen et al., 2019). Argonaute proteins are a key component of the miRNA‐induced silencing complex found in almost all eukaryotes, as well as some bacteria and archaea (Jeppesen et al., 2019; Hutvagner & Simard, 2008). Argonaute proteins are also associated with maintaining genome integrity, controlling protein synthesis and maintaining RNA stability (Hutvagner & Simard, 2008). Regarding their involvement with EVPs, they may also be responsible for circulating miRNA as co‐isolated fractions with exosomes (Jeppesen et al., 2019).

Another class of small particles often co‐isolated with EVs are lipoproteins (high‐density [HDL], low‐density [LDL], intermediate‐density [IDL], and very‐low‐density [VLDL] lipoproteins), ranging in size from 5 to 90 nm in diameter (Liangsupree et al., 2021). Lipoproteins are synthesized through the endoplasmic reticulum and contain distinct cargos, including RNA and cholesterol (Soleymani et al., 2023; Liangsupree et al., 2021; Claude, 1970). Lipoproteins are micelle‐like assemblies that consist of phosphatidylcholine and sphingomyelin, as well as cholesterol, fatty acids and apolipoprotein A, B and C (Hirowatari et al., 2008; Lutomski et al., 2018; Claude, 1970). In addition to lipoproteins, cell‐free nucleic acids are covered within this review (Timagiorgis et al., 2011). Cell‐free nucleic acids are found freely in biological fluids and have uses in liquid‐biopsy technologies (Timagiorgis et al., 2011). The biogenesis and function of cell‐free nucleic acids remain unknown; however, changes in concentration and quality of cell‐free DNAs/RNAs have been found to differ in healthy/diseased state patients (Pös et al., 2018). Understanding and deciphering the nuances of cell‐free nucleic acids is important for their future potential for clinical use in diagnostics.

The EVPs mentioned in this article can be isolated through a variety of well‐established protocols (see Figure 1), which are not the focus of this current review. Methods including differential ultracentrifugation (Crescitelli et al., 2021; Théry et al., 2006; Cvjetkovic et al., 2014), density gradient ultracentrifugation (Théry et al., 2006), size exclusion chromatography (SEC) (Böing et al., 2014; Gámez‐Valero et al., 2016), immunoprecipitation (Théry et al., 2006; Tauro et al., 2012), field‐flow fractionation (Zhang et al., 2018), nanofluidic deterministic lateral displacement (Smith et al., 2018; Wang et al., 2022), heat shock protein affinity (Ghosh et al., 2014) and acoustic trapping technology (Bryl‐Górecka et al., 2018; Rezel et al., 2016). Additionally, EVP characterization has been outlined by MISEV 2023 (Théry et al., 2018; Welsh et al., 2024), and can be evaluated via particle number concentration, particle size, quantification of total protein, lipids and RNA, as well as characterization of EV morphology, and by protein marker composition, as listed in Table 1. EVP characterization is necessary to deconvolute large/small EVs from other subtypes as listed in Table 1.

3. RNA TYPES FOUND IN EVPS

EVPs are known to encapsulate many different types of RNAs, including long (Kim et al., 2017; Prieto‐Vila et al., 2021), short (Sork et al., 2018), coding (Batagov & Kurochkin, 2013; Chiang et al., 2023) and non‐coding (Kim et al., 2017; Gezer et al., 2014; Mohankumar & Patel, 2016) RNAs (Figure 3). There is a current challenge in the field of EVP omics that includes identifying each of the mentioned RNAs below.

3.1. Messenger RNAs (mRNAs)

mRNAs function as protein‐coding templates that are synthesized in the nucleus and exported to the cytosol for translation (Choi et al., 2013; Lowe et al., 2017; Gomez et al., 2018). Mature post‐splicing mRNAs contain three segments, a 5′ methyl‐7‐guanosine cap, 5′ untranslated region, a coding region, a 3′ untranslated region, and a 3′ poly‐A tail (Kim et al., 2017). Full‐length and fragmented mRNA have been discovered in EVPs (Kim et al., 2017; Prieto‐Vila et al., 2021). mRNAs derived from hepatocellular carcinoma cell EVPs contained fragments ranging from 25 to 4000 nt, whereas cellular mRNAs are typically 400–12,000 nt (Prieto‐Vila et al., 2021). Currently, there is not a clear understanding of how fragmented mRNAs function in cellular communication; however, it has been theorized that EVPs are enriched in mRNAs that may code for very short proteins (Batagov & Kurochkin, 2013; Chiang et al., 2023). Additionally, it has been shown that upon delivery, fragmented mRNAs from EVs produce proteins with differing functions from their parental source (Batagov & Kurochkin, 2013; Chiang et al., 2023). Further studies are necessary to understand how full‐length and fragmented mRNAs function in the EVP space and mediate cellular communication.

3.2. MicroRNAs (miRNAs)

MiRNAs are small and non‐coding RNAs (∼18–22 nt), that are highly biologically stable both inside and outside cells (Boivin et al., 2019; Kim et al., 2017; Xu et al., 2022). MiRNAs can bind to mRNA to control protein expression and have unique profiles when comparing EVP isolation from diseased or normal organisms – thus giving them promise as novel biomarkers for liquid biopsy (Boivin et al., 2019; Kim et al., 2017; Xu et al., 2022). Due to their roles in modulating gene expression, miRNAs may also be useful in development, cell proliferation and differentiation, apoptosis and immune regulation, among other biological processes (Kim et al., 2017). Levels of miRNAs from EVs originating in tumour patients were reported to be significantly higher than those in healthy controls, indeed numerous miRNAs have been identified as disease‐related diagnostic and prognostic markers for hepatocellular carcinoma (Von Felden et al., 2022), breast cancer (Cha et al., 2015), prostate cancer (Morello et al., 2013) and lung adenocarcinoma (Xu et al., 2022). The sorting mechanism of miRNA into EVPs is not understood (Sork et al., 2018). However, Shurtleff et al. suggest that the RNA‐binding protein YBX1 may play a key role in sorting and selecting miRNAs into exosomes, as well as other small RNAs such as ncRNA, tRNA and Y RNA (Shurtleff et al., 2017).

3.3. Long non‐coding RNAs (lncRNAs)

lncRNAs were discovered in the 1970s by Berget et al. (1977). They typically consist of >200 nt and are produced from intergenic regions (Boivin et al., 2019; Kim et al., 2017; Zhang et al., 2013; St.Laurent et al., 2015). LncRNA is biologically involved in controlling many different cellular processes, including gene transcription, mRNA production, protein translation, cellular senescence and assembly of macromolecular structures (Kim et al., 2017; St.Laurent et al., 2015). LncRNAs have been proposed as potential biomarkers for cancer diagnoses, as multiple specific lncRNAs are upregulated in circulating EVPs from liver, breast and cervical cancers (Kim et al., 2017; Gezer et al., 2014; Mohankumar & Patel, 2016). In these studies, lncRNAs from EVPs had distinctly differing expression patterns compared to cells (Kim et al., 2017; Gezer et al., 2014; Mohankumar & Patel, 2016). Another proposal for the use of lncRNAs in EVPs is that they may provide mechanisms for loading miRNAs into EVs, due to significant complementary motifs between regions of lncRNAs and specific miRNAs found in prostate cancer (Ahadi et al., 2016).

3.4. Y RNAs

Y RNAs were discovered by Lerner et al. (1981). They are classified as a mid‐sized, non‐coding RNA (∼100 nt) that are involved with RNP complexes and DNA replication through interactions with chromatin and initiation proteins (Valkov & Das, 2020). Y RNAs are largely conserved (Gulìa et al., 2020). They also have a unique structure, with a complex three‐dimensional rigid stem and single‐stranded flexible loop (Gulìa et al., 2020). They are associated with major targets for autoimmune responses and may be useful in tumour characterization (Chen et al., 2022; Driedonks & Nolte‐T'Hoen, 2019; Gulìa et al., 2020). Y RNAs have the potential as biomarkers or molecular targets for human cancers, as they have been isolated from EVPs in paediatric brain cancer (Magaña et al., 2022) and many different solid tumours such as lung, kidney, bladder, prostate, colon and cervix (Gulìa et al., 2020). Y RNAs have been detected in EVs from multiple human cell lines and biofluids and may be involved in immune‐related processes, immune response and the establishment of a tumour microenvironment – as well as changes in the concentrations of Y RNAs in plasma EVs being associated with disease progression (Driedonks & Nolte‐T'Hoen, 2019). Additional research is necessary to further understand the roles of Y RNAs in humans, and their involvement as EVP cargoes.

3.5. Circular RNAs (CircRNAs)

CircRNAs are a class of non‐coding RNAs that are detected in EVPs and generated through head‐to‐tail backsplicing (Kim et al., 2017). Their lack of terminal ends increases their half‐life and protects them against degradation by exonucleases, this may enable critical translational and posttranslational functions to persevere (Kim et al., 2017). Additionally, circRNAs have been identified as sponges for some miRNAs, indicating they may be involved in the regulation and stability of mRNAs (Kim et al., 2017; Zhang et al., 2013; St.Laurent et al., 2015). CircRNAs fall into three subclasses, intronic circRNAs and exon‐intro circRNAs which are mainly found in the nucleus, whereas the exonic circRNA is typically found in both the cytoplasm and the nucleus (Han et al., 2022). In patients with pancreatic cancer, a total of 453 significantly differentially expressed circRNAs were identified, where pathway analyses indicated involvement with cellular senescence, endocytosis and cell cycle progression, among others (Li et al., 2019). Another study by Li et al. reported that circRNAs isolated from serum EVs were able to distinguish healthy patients from those with colon cancer (Li et al., 2015). Additionally, circRNAs have been identified as potential biomarkers for diseases such as schizophrenia (Guo et al., 2023).

3.6. Small nucleolar RNAs (snoRNAs)

snoRNAs are intron‐encoded non‐coding RNAs found in the nucleoli, consisting of 60–300 nt in length (Bellingham et al., 2012; Cammarata et al., 2022). They are responsible for post‐translational modifications and maturations of rRNAs, snRNAs and other non‐coding RNAs (Cammarata et al., 2022). They are also diverse, known to regulate cardiac‐relevant and oxidative pathways, as well as gene expression and intercellular communication (Chabronova et al., 2024). They are also enriched in EVPs compared to source cells and function to guide the chemical modification of other RNA species (O'Brien et al., 2020). SnoRNAs have been found to be upregulated in lung cancer, and are in use as predictive measures for lung cancer progression through early stages (Cammarata et al., 2022). SnoRNAs can be difficult to detect using certain RNA isolation protocols and bioinformatics pipelines as they are short in length, have unique secondary structures and lack a poly(A) tail (Chabronova et al., 2024). Further studies are necessary to identify and determine the functionality of snoRNAs in EVs.

3.7. Small nuclear RNA (snRNA)

snRNAs are another class of mid‐sized RNAs (∼100 nt) and are required for pre‐mRNA splicing, as well as playing a role in the regulation of RNA expression and stability through splicing‐associated processes (Boivin et al., 2019). snRNAs are found abundantly in EVs, including U6 and U1 snRNAs, which have been proposed to qualify as candidate housekeeping EV‐RNAs due to their abundance and consistency in EVs (Mosbach et al., 2021). snRNAs have also been proposed as potential biomarkers due to their differences in abundance comparing diseased vs healthy states (Li et al., 2014). One study by Kaur et al. determined that only 4% of small RNA reads aligned with snRNA in human pluripotent stem cell EVs (Kaur et al., 2018). Another study by Valkov et al. used snRNA‐seq to profile the role of snRNA isolated from EVs using murine red blood cells where results indicated that there was an enrichment of genes associated with intercellular signalling and immune response (Valkov et al., 2021).

3.8. Transfer RNAs (tRNAs)

tRNAs are highly structured and expressed mid‐sized (∼50–200 nt) RNA subtypes involved in the process of translation (Boivin et al., 2019). tRNAs are transcribed in the nucleus from the tRNA gene using RNA polymerase III (Weng et al., 2022). Mature full‐length tRNAs are 70–90 nt folded into an L‐shaped tertiary structure (Weng et al., 2022). In the space of the unannotated transcriptome, fragments and derivatives of tRNA have been discovered through advances in sequencing technologies (Boivin et al., 2019). Fragments derived from tRNAs are abundant species in EVs (Sork et al., 2018).

3.9. Ribosomal RNAs (rRNAs)

rRNAs are a major component of the ability of the ribosome to complete translation (Wei et al., 2017; Sork et al., 2018). Typically associated with the endoplasmic reticulum, rRNAs can also be found in the cytoplasm (Abramowicz & Story, 2020). The loading of rRNAs into EVs is currently controversial, where some studies indicate that up to 80% of EV cargo is identified as rRNA, whereas some studies indicate that no rRNA is discovered (Sork et al., 2018; Abramowicz & Story, 2020). Additionally, rRNA has not been shown as a potential biomarker for disease, and no specific function for rRNA loading has been identified in EVs (Abramowicz & Story, 2020). Additionally, bacterial‐EV‐derived 16S rRNA was detected in the urine of pregnant and non‐pregnant women, indicating that bacterial‐derived EVs may be secreted from gut leakage (Ricci et al., 2020).

3.10. Functionality of RNA in EVs

The specific functionality of RNA cargoes in EVs remains largely unknown. Some functional studies have been completed recently to investigate how EVs carrying mRNA cargoes may be translated to recipient cells (Valadi et al., 2007; Prieto‐Vila et al., 2021; Guo et al., 2022). Studies have been completed on coding RNAs isolated from EVs found in plasma that may be translated by host cells to promote the repair of cardiac cells (Danielson et al., 2018), contribute to neurodegeneration (Varcianna et al., 2019) or create favourable microenvironments for cancer progression (Abels et al., 2019) or metastasis (O'Brien et al., 2020; Hoshino et al., 2015) (Figure 4). Since our understanding of non‐coding RNAs largely remains unknown, their roles in intercellular communication as cargoes of EVs require further research (O'Brien et al., 2020). EVs also have a proposed functional role in maintaining cellular homoeostasis through the disposal of unwanted cellular materials, such as misfolded proteins, removal of cholesterol and elimination of nuclear DNA fragments to avoid activation of DNA damage responses (Dellar et al., 2022). RNAs in EVs can be useful for liquid biopsy approaches to identifying, diagnosing or tracking the progression of a certain disease (Chen et al., 2023; Yokoi et al., 2017; Dogra et al., 2020) or targeted therapeutics (Chen et al., 2018; Yokoi et al., 2017; Kamerkar et al., 2017). Additionally, the functionality of RNAs in EVs has been studied which shows that small EVs can induce changes in cellular behaviour via mRNA, miRNA and protein cargo exchange (Valadi et al., 2007; Ratajczak et al., 2006). For example, mice were exposed to 10 µg of total small EV protein as a method of determining an appropriate dose of small EVs (noted as ‘exosomes’ in their work) – the concentration of RNA within this dose was not determined prior to injection, bringing into question the functionality of RNA in EVs for therapeutic use (Hoshino et al., 2015). A standardized method of determining the amount of RNA in EVs is necessary for the continued use of small EV‐RNA in a therapeutic setting. Additional information on EVs for therapeutic use is highlighted in Section 7.

FIGURE 4.

FIGURE 4

EV functionality: challenges and opportunities. Current challenges and potential opportunities with EV‐RNA functionality.

4. EPIGENOMICS AND EPI‐TRANSCRIPTOMICS OF EVS

The transfer of RNA, DNA and/or protein cargoes between EVPs from host cells to other cell types has been studied to understand their roles in intercellular communication and epigenetic changes to organisms (Camussi et al., 2011). EVs derived from murine embryonic stem cells have been shown to reprogrammme adult hematopoietic stem/progenitor cells through epigenetic reprogramming (Ratajczak et al., 2006). Multiple observations of EVs inducing epigenetic changes through the delivery of mRNA and miRNA as detailed in the review by Camussi et al. show that the regulation of protein translation and gene expression in neighbouring cells is potentially mediated by EVPs (Camussi et al., 2011).

EVPs have also been utilized as delivery vehicles for gene‐editing CRISPR/Cas tools, as they have high biocompatibility, safety, molecular engineering opportunities, and can cross biological barriers (Kostyushev et al., 2020). Further research is necessary to understand the loading efficiency and delivery of specific cargoes from EVPs, however, they remain an exciting solution to CRISPR/Cas delivery due to their ability to escape endolysosomal pathways, shield their cargoes from aggressive environmental conditions and the immune system and their simple and scalable engineering (Kostyushev et al., 2020). Additionally, EVPs have been studied for their potential in mediating soma to germline information transfer, inducing a transgenerational epigenomic modification (Sharma, 2014). Comprehensive bioinformatic studies have shown that EVs carrying ncRNA, miRNA and mRNAs can induce epigenetic inheritance in mammals (Sharma, 2014). Indeed, the role of the cargoes within EVPs and their impact on host cells through intercellular communication, epigenomic alterations and genetic engineering remain unknown. Future studies on how RNA, DNA and protein from EVPs interact are necessary to further understand their importance in human biology.

5. TRANSCRIPTOMICS TECHNOLOGIES FOR EVPS

The ability to analyse an organism's total transcriptome in a given tissue at homoeostasis, or after exposure to certain conditions gives a snapshot into how genes are regulated or give function to previously unannotated genes (Von Felden et al., 2022; Lowe et al., 2017). An organism's transcriptome refers to the sum of all its RNA transcripts, including coding and non‐coding RNAs, which are necessary for cellular function (Padilla et al., 2023). Analyses of the human transcriptome began in 1991, with the sequencing of 609 mRNA sequences from the human brain (Adams et al., 1991). Since then, there have been many technological advances which have allowed EVPs to be sequenced using both long‐read and short‐read technologies (Wang et al., 2021; Padilla et al., 2023; Huang et al., 2020). Herein, we discuss the transcriptomics technologies of EVPs.

5.1. Long‐read sequencing of EVs

Long‐read human genome sequencing generates continuous reads ranging from 10 kilobases to several megabases from native DNA (Logsdon et al., 2020). Currently, two main technologies are in use, Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), which perform using slightly different chemistries and sequence detection methods and can produce reads from highly repetitive regions of the genome with accuracy (Logsdon et al., 2020). Few studies have investigated the RNA transcriptome of EVs using long‐read sequencing technologies. In one such study, poly‐A priming was utilized to enable a full‐length transcript generation through reverse‐transcription of poly‐A positive material (Padilla et al., 2023). The results from this study discovered mainly mRNA, pseudogenes and lncRNA from EVs generated from human K562 cells (Padilla et al., 2023). Another study utilizing long‐read transcriptomics also found a majority of mRNA reads, as well as circRNA and lncRNA generated from peripheral plasma samples of pregnant females (Huang et al., 2020).

In 2015, the first nanopore sequencing device, MinION, was released by ONT (Wang et al., 2021). The release of this technology allowed for an increase in sequencing, data and analyses of DNA and RNA from biologics. There are two options when sequencing RNA with ONT's methods; special library preparation is necessary in which the 3′ end and adaptor of native RNA are ligated without reverse transcription, or cDNA is synthesized to obtain an RNA–cDNA duplex with ligation to the adaptor (Wang et al., 2021). In either case, only RNA is sequenced and accuracy is reported to be ∼85% (Wang et al., 2021). Continued advances in nanopore technology have allowed for the sequencing of technical and low‐abundance samples, such as EVPs (Srinivasan et al., 2019).

5.2. Short‐ and long‐read sequencing

Short‐read sequencing is the most used form of sequencing technology in which the genome is broken down into small fragments prior to sequencing, typically between 50 and 300 nt (Logsdon et al., 2020). Short‐read sequencing is typically a lower cost and a higher accuracy option compared to long‐read sequencing (Quail et al., 2012; Korotkevich et al., 2021). However, limitations to short‐read sequencing include difficulty in accurately reporting on pseudogenes or repetitive regions, methylation signatures are not captured, and large copy number and structural variants are not usually detected (Lowe et al., 2017; Padilla et al., 2023).

Currently, the main short‐read sequencing technologies are offered by Illumina and long read by PacBio. PacBio is capable of 10,000 bp reads with 87% single‐read accuracy, whereas Illumina provides 50–300‐bp reads and has a 99.9% single‐read accuracy rating. While Illumina has been considered the gold standard in sequencing technologies, there are major shortcomings to note (Quail et al., 2012; Bolger et al., 2014). First, their short‐reads of 300 bp or less are considered to be too short to detect more than 70% of the human genome structural variation, and over 15% of the genome remains inaccessible to Illumina technologies due to repeat content or atypical GC content (Logsdon et al., 2020). PacBio uses a topologically circular DNA molecule template which allows longer reads (Logsdon et al., 2020). However, adapting long‐read technologies to EV‐RNAs represents a self‐contained technical challenge due to the RNA length heterogeneity inherent to EVs.

5.3. Single‐EV transcriptomics

Recently, single‐cell sequencing transcriptomics has been used to analyse the profile of single‐EVPs (Tesovnik et al., 2021; Veziroglu & Mias, 2020). In order to navigate low‐RNA concentrations, single‐cell technologies utilize a modified cDNA amplification protocol to generate libraries sufficient to capture the genome of a single cell with high accuracy (Tang et al., 2009). In 2022, Luo et al. was the first group to utilize sing‐cell sequencing technology to investigate the transcriptomic features in a single EVP (Luo et al., 2022). In this study, EVPs ranging from 100 to 1000 nm in diameter were isolated by successive differential centrifugation and adjusted barcoding methods (Luo et al., 2022). Their results indicated that 2088 and 3935 EVPs from two replicates of K562 cells and 1603 EVPs from MSC cells were captured in their single EV‐RNA transcriptomics experiment. From both cell types, the median number of genes per EV was ∼43 (Luo et al., 2022). Analysis of the top 500 most highly expressed genes indicated that ribosomal genes, mitochondrial genes and haemoglobin genes were present within the EVPs (Luo et al., 2022). More recently, there have been additional attempts to understand EVPs at the single‐particle level, including an analysis of single EVPs produced from malignant breast cancer (Zhang et al., 2023) and cardiomyocyte proteostasis (Schoger et al., 2023).

6. ANALYSIS OF EVP TRANSCRIPTOMICS

6.1. EVP‐RNA databases

The current online resources specific to EVP‐derived RNA species are summarized in Table 2. These databases compile EVP‐derived RNA resources from various sources, categorizing them based on available information specifically related to isolation source, isolation method, type of EVP population and RNA species. These databases serve various purposes. For instance, ExoBCD focuses on markers for breast cancer, indicating its disease‐specific utility (Wang et al., 2021). Others, like ExoCarta (Keerthikumar et al., 2016) and miREV (Hildebrandt et al., 2021), are dedicated to term ‘exosomes’, while exoRBase 2.0, CMEP (Li et al., 2019), EVpedia (Kim et al., 2015) and ExoBCD (Wang et al., 2021) cater to a broader category of EVPs. Some databases are tailored to a single RNA class, such as EVmiRNA (Liu et al., 2019), CMEP (Li et al., 2019) and miREV (Hildebrandt et al., 2021) which are used for miRNAs, whereas platforms like ExoCarta (Keerthikumar et al., 2016), exRNA Atla (Murillo et al., 2019) and EV Atlas (Bolger et al., 2014; Langmead et al., 2009) offer a comprehensive range of RNA classes. Although these expanding resources are invaluable, they currently lack consistent curation. For instance, miR‐1202 and miR‐1246, identified as miRNAs in miRBase, are in fact snoRNA and a foetal bovine serum contaminant, respectively (Sakha et al., 2016; Alexander et al., 2022; Tosar et al., 2017). Such mis‐annotations may stem from variations in curation methods utilized by different databases. Consequently, a well‐curated and standardized resource for EVP‐RNAs would significantly benefit the field.

TABLE 2.

Comprehensive summary of current online resources specific to EVP‐derived RNA species.

Database Reported EV subtype RNA class References
ExoCarta Exosomes mRNA, miRNA, rRNA, tRNA, snoRNA, snRNA, lncRNA, lincRNA, ncRNA Keerthikumar et al. (2016)
exRNA Atlas Extracellular vesicles, exosomes, HDL complex, lipoproteins, total cell‐free biofluid RNA

miRNA, piRNA, tRNA,

Y RNA, lincRNA, snoRNA, snRNA

Murillo et al. (2019)
Vesiclepedia Apoptotic bodies, ectosomes, exosomes, extracellular vesicles, large dense core vesicles, membrane blebs, microparticles, microvesicles, oncosomes, outer membrane vesicles, prostasomes mRNA, miRNA Pathan et al. (2019)
EVmiRNA Exosomes, microvesicles miRNA Liu et al. (2019)
EV Atlas Small/Large EV miRNA, snoRNA, piRNA, snRNA, rRNA, tRNA, Y RNA Bolger et al. (2014), Langmead et al. (2009)
miRandola Argonaute2 protein, exosomes, microvesicle, microparticle, membrane vesicle, high‐density lipoprotein miRNAs, circRNAs, lncRNAs Russo et al. (2018)
exoRBase 2.0 Exosomes mRNA, circRNAs, lncRNAs
EVpedia Extracellular vesicles mRNA, miRNA Kim et al. (2015)
CMEP Exosome, microvesicles Circulating miRNAs Li et al. (2019)
ExoBCD Exosomes mRNAs, miRNAs, lncRNAs Wang et al. (2021)
Human Biofluid RNA Atlas mRNA, circRNA and miRNA Hulstaert et al. (2020)
miREV Exosomes miRNA Hildebrandt et al. (2021)

6.2. Bioinformatics pipelines for EVP transcriptomics

Unlike the transcriptomic analysis of cellular RNA, for EVP‐derived RNA, standard bioinformatics pipelines often need to be adapted or customized to account for the heterogeneous class of EV‐derived RNA. Similarly, like current RNA databases, the pipeline for processing EVP‐RNA also serves a specific purpose, depending on the RNA class and size. A bioinformatics pipeline exceRpt (Rozowsky et al., 2019) is designed specifically for short RNAs. While several small RNA‐seq analysis pipelines are available (Bezuglov et al., 2023), they are typically limited to certain RNA species and often utilize different RNA databases, posing challenges for cross‐study comparisons. Annotation of genomic regions without using a reference is rarer due to their limited interpretability; however, several groups have demonstrated the capacity of de novo transcriptome discovery and assembly to identify and quantify biologically relevant transcripts. Such approaches include Wajnberg et al. using a find‐then‐annotate approach to analyse unannotated expression RNAs (Wajnberg et al., 2023) and Felden et al. using a read clustering approach to predict early hepatocellular carcinoma (Von Felden et al., 2022). The few pipelines that can analyse more than one RNA type are still inefficient for total RNA analysis. Therefore, there is a need for a standardized and customized pipeline capable of analysing a broad spectrum of small RNA species of varying sizes, including annotated and unannotated genomic regions, to facilitate consistent and comparable research outcomes. To achieve this, the choice of alignment tools and parameters might require adjustments for the uneven nature of EV‐RNA, which includes a mixture of small RNAs. This is followed by utilizing appropriate normalization and quantification techniques, given the variability in EVP‐RNA yield and differences in EV production and RNA packaging across conditions.

7. LIQUID BIOPSY AND TARGETED EVP THERAPIES

Liquid biopsy is a minimally invasive tool for early diagnosis, treatment selection and long‐term follow‐up of cancer and numerous diseases that can be performed procedures, and frequently uses the patient's body fluids such as urine or blood (Chen et al., 2022; Gaglani et al., 2021). Unlike tissue biopsy, liquid biopsy is less susceptible to spatial heterogeneity and can provide information on metastatic tumour tissue (Parikh et al., 2019). Although liquid biopsies typically analyse circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), cell‐free RNA (cfRNA) and miRNA in body fluids such as blood and urine (Ye et al., 2019), EVPs have recently attracted much attention (Kalluri & LeBleu, 2020; Vasconcelos et al., 2019; Boivin et al., 2019; Kim et al., 2017; Xu et al., 2022; Yokoi et al., 2017; Li et al., 2017). Liquid biopsies have been developed to examine miRNAs and mRNAs contained in small EVs, such as exosomes, and there are reports that the number of specific miRNAs has increased in cancer patients (Jin et al., 2017; Madhavan et al., 2015). There is also a report of an omics analysis that used exosomal RNA in plasma to stratify the effect of preoperative chemotherapy in cancer patients (Guo et al., 2022). Furthermore, RNA‐seq in tumour culture supernatants from prostate cancer patients, as well as blood and urine EVs before and after resection found differential expression of reactive oxygen species, p53 pathway, inflammatory/cytokine, oncogenes and tumour suppressor genes in EV nanosatellites (Chen et al., 2022). This comparison of RNA in the EVs before and after treatment demonstrated the potential of liquid biopsies for non‐invasive monitoring. It also demonstrates that EVs unannotated RNAs (small RNA clusters) may play important new roles in the regulation of gene expression, post‐transcriptional and post‐translational mechanisms (Dogra et al., 2020). However, there is a large variability in results due to the methods used to recover small EVs (Royo et al., 2020). Thus, the challenges in developing small EV‐based liquid biopsy, coupled with the problem of high heterogeneity (Raposo & Stoorvogel, 2013), require further research for the practical application of exosome‐based liquid biopsy in the clinic (Yu et al., 2022; Kowal et al., 2016). Additionally, EVPs are used in differing targeted therapies involving both human and murine research models.

For EVP‐based therapies, both human and murine in vitro and in vivo EV therapies are being researched. Current human trials include EV therapies used in anti‐inflammatory (Warnecke et al., 2021; Schultz et al., 2021; Abdelgawad et al., 2021), anti‐tumour (Weng et al., 2021; Nicodemou, 2023; Shan et al., 2024; Lee et al., 2013), immunomodulatory (Escudier et al., 2005; Besse et al., 2016; Narita et al., 2015) and drug delivery (Dai et al., 2008) summarized in Table 3. Notable examples include reports that mesenchymal stem cells (MSCs) derived EVs can suppress inflammation caused by cochlear implantation and are useful in neurodegenerative diseases due to their own anti‐inflammatory properties (Warnecke et al., 2021; Hoecke et al., 2021; Cone et al., 2021).

TABLE 3.

A summary of EVP therapies, including their effect, source and targeted disease.

Effect EV source Research Model Target diseases and treatment methods References
Anti‐inflammatory Mesenchymal stem cells Human Study Reduce inflammation by cochlear implantation Warnecke et al. (2021)
Mesenchymal stem cells Murine Studies Niemann‐Pick Type C disease, Alzheimer's Disease Hoecke et al. (2021), Cone et al. (2021)
Mesenchymal stem cells Murine and Human Study Acute lung injury Lee et al. (2019), Hao et al. (2019)
Mesenchymal stem cells Human Study COVID‐19 Schultz et al. (2021), Abdelgawad et al. (2021)
Anti‐tumour Mesenchymal stem cells Murine and Human Study Cancer therapy (suppress angiogenesis) Weng et al. (2021), Nicodemou. (2023), Shan et al. (2024), Lee et al. (2013)
Immunomodulatory Mesenchymal stem cells Human Study Inflammatory disease Seo et al. (2019)
Dendritic cells Human Study Cancer vaccine Escudier et al. (2005), Besse et al. (2016), Narita et al. (2015)
CD8+ T cells Murine Study Cancer therapy Seo et al. (2018)
Drug delivery Adeno‐associated virus‐producing cells Murine Study Gene delivery for heart failure treatment Li et al. (2023)
Mesenchymal stem cells Murine Studies, Clinical Trials siRNA delivery for cancer therapy Cheng and Hill, 2022), Kamerkar et al. (2017), Mendt et al. (2018)
Dendritic cells Murine Study siRNA delivery for Alzheimer's disease Alvarez‐Erviti et al. (2011)
Ascites Human Study GM‐CSF delivery for cancer therapy Dai et al. (2008)
Macrophage Murine Study Paclitaxel delivery for cancer therapy Kim et al. (2016)
Suppression of EVs secretion Cancer cells Murine Study Cancer therapy (anti‐tumour immunity) Poggio et al. (2019), Guan et al. (2022)
Hepatocellular cell carcinoma cells Murine Study Cancer therapy Hu et al. (2023)
Prostate cancer cells Murine Study Cancer therapy Urabe et al. (2020)

Next, regarding immunomodulatory effects, immune cell‐derived EVs contain a variety of molecules that activate or suppress immunity and are involved in both innate and acquired immunity. Among them, EVPs derived from dendritic cells (DCs), one of the antigen‐presenting cells, express MHC‐I and MHC‐II and are known to be involved in antigen presentation and to stimulate tumour‐specific immune responses (Zitvogel et al., 1998; Lynch et al., 2009; Pitt et al., 2016). In EVPs derived from cancer cells, PD‐L1+ small EVs have been reported to be associated with the therapeutic efficacy of immune checkpoint inhibitors and prognosis because PD‐L1 is expressed on the surface of small EVs released from cancer cells and causes tumour growth by suppressing CD8+ T cell function (Theodoraki et al., 2018). A remaining challenge in the use of EVPs as therapeutics is the risk of infection caused by intravenous administration of small EVs, therefore, there is an urgent need to establish guidelines for the therapeutic application of EVPs based on efficacy and quality control of EVPs.

8. CURRENT CHALLENGES, POSSIBLE SOLUTIONS, AND RECOMMENDATIONS

In the last decade, ISEV has made tremendous progress with EV research and also identified critical limitations with EV‐RNA investigation and missing opportunities (Théry et al., 2018; Welsh et al., 2024). For instance, major gaps in knowledge in EV‐RNA isolation, library prep, sequencing and bioinformatics analyses (suboptimal alignment, lack of multimapping quality control, RNA contaminants, missing RNA cargo types and lack of standardized analytical tools) have been identified with current standard approaches (Murillo et al., 2019; Welsh et al., 2024). These limitations reduced the discovery capabilities of liquid‐biopsy technologies among the international scientific community (Welsh et al., 2024). We also now understand that vesicle heterogeneity plays a key role in EV transcriptome composition (Lässer et al., 2011; Crescitelli et al., 2021; Karimi et al., 2022). Therefore, there is a critical need to overcome these limitations and provide new open‐access algorithms to advance our understanding of EVP transcriptomes. At present, understanding the small RNA landscape of EVPs is a major bottleneck when it comes to delineating their role in disease, specifically for accurate diagnostics. Here, we highlight current challenges, discuss possible solutions and present recommendations for robust and reproducible analyses of EVP‐associated small RNAs.

8.1. Challenge 1: Small amounts of EV‐RNA recovered from biofluids may lead to a lack of reproducibility

A recent worldwide survey (Royo et al., 2020) reported that two of the most popular human biofluids used for EV isolation are plasma and serum. A major challenge involves small‐volume inputs from plasma and serum that are acquired for EVP isolation methods. For example, ∼2‐mL aliquot of serum may result in ∼200 pg/µL of RNA (Chen et al., 2022), thus resulting in a small sampling of RNA molecules and a lack of reproducibility. Furthermore, different RNA isolation methods for small RNA offer several pros and cons providing different yields and lengths of RNA. EV isolation technology can also lower the EV‐RNA yield. For instance, SEC is a rapidly growing tool for EV isolation (Gámez‐Valero et al., 2016); however, SEC dilutes the sample concentration by a factor of ∼10–100 (Böing et al., 2014; Gámez‐Valero et al., 2016). Hence, this process lowers the EV‐RNA recovered from biofluids. Additionally, it should be noted that within isolated EVs, there are low concentrations of RNAs. A study by Chevillet et al. reported that there was less than one miRNA per isolated EV particle (Chevillet et al., 2014). Our group has reported similar findings, where approximately 1.4 × 108 EV particles were necessary via SEC isolation in order to obtain enough RNA for proper bioinformatics pipeline analysis (Soleymani et al., 2023; Chen et al., 2022). Heterogeneity of RNA in EVs is also a problem, as some researchers have noted that there may be a lack of miRNA enrichment in small EVs (Chevillet et al., 2014; Albanese et al., 2021; Balkom et al., 2015), whereas others have suggested high enrichment of tRNAs in small EVs (Chevillet et al., 2014; Nolte‐'t Hoen et al., 2012). Possible solutions and recommendations: Recently reported by Tkach et al. (2022) and others (Liangsupree et al., 2021; Oeyen et al., 2018), a downstream (post‐SEC) benchtop centrifugal ultrafiltration/concentration by molecular weight cut‐off (MWCO) has provided higher EV yields. We recommend an integration of ultrafiltration with specific MWCO to purify and concentrate small EVs. As discussed in Table 1, ultrafiltration by MWCO can further enhance EV purity, given that VLDLs, HDL and small EVs differ in MW by a factor of ∼10–100 kDa, respectively (Table 1). Importantly, we do not recommend using RNA concentration kits for EV‐RNA because most kits are designed for cellular RNAs, and some may bias RNA enrichment by their lengths and specificity.

8.2. Challenge 2: EV‐RNA quality controls are not well established

The current RNA quality control standards are developed based on cellular RNA analyses that historically focused on well‐established annotated genomic regions (e.g. miRNA, mRNA, rRNA). However, since small EVs predominantly carry small RNA molecules, it is apparent that EV‐specific RNA requires a novel approach for a better understanding of their molecular cargo (Valadi et al., 2007; Bellingham et al., 2012; Murillo et al., 2019). For instance, the well‐established quality control metric ‘RNA integrity number’ (RIN) – which evaluates the area under the curve of large ribosomal RNA (18S and 28S) separated via electrophoresis, is unsuitable for EV‐associated small RNA (Valadi et al., 2007; Schroeder et al., 2006). Furthermore, nanodrop (Thermo Scientific) and qubit (Invitrogen) can provide qualitative information on EV‐associated small RNA. Possible solutions and recommendations: It is important to note that the EV‐RNA QC protocols may fail and this does not always indicate that the EV‐RNA is degraded (see Section 5.1, nanopore long‐read sequencing). We recommend assessing the precise length of RNA of EVs, through capillary electrophoresis using two separate analyses kits: Pico and small RNA kits for bioanalyser (Crescitelli et al., 2013). The size distribution and quantity of genetic materials extracted from the EVs should be evaluated using an electropherogram before and after cDNA library preparation (discussed in challenge 3) (Tesovnik et al., 2021). The electropherogram curve for EV‐RNA samples tends to carry relatively shorter sequences of up to 200 nucleotides with no distinctive peak for 18S and 28S ribosomal RNA; the presence of 18S or 28S peak could denote contamination from cell debris during the isolation process (Tesovnik et al., 2021; Tang et al., 2017). Likewise, conventional RNA and DNA integrity numbers devised to evaluate genetic material qualities are less reflective of EV‐RNA quality given their short sequence length (Tesovnik et al., 2021).

8.3. Challenge 3: EV‐RNA‐seq protocols (from cDNA prep to sequencing) are not well‐established

To distinguish the technical variance from the biological differences, it is essential to establish references and processing controls for effective RNA quantification prior to downstream computational processing (Tesovnik et al., 2021). Library prep methods comparison, RNA input quantity (e.g. amount of starting material) remains an open question. Currently, several small RNA library prep kits (Takara bio, true seq, NEBNext etc.) are used for EV‐RNA library prep. It is found that the choice of library preparation impacts the miRNA sequences detected by RNAseq (Srinivasan et al., 2019). Possible solution and recommendations: Total small RNA sequencing and total RNA sequencing are necessary to capture the complete landscape of RNA subtypes found within EVPs. Studying only the miRNA content may be ignoring up to 70%–90% of the total EVP cargo (Chen et al., 2022). Furthermore, studies have verified that the addition of ERCC RNA or DNA spike‐in to all samples could allow for effective evaluation of the trueness of nucleotide quantification during the library preparation process (Tesovnik et al., 2021; Hulstaert et al., 2020). This is especially important for EVP samples that tend to have low‐input materials and varying concentrations of EVPs and are critical for normalizing sequencing reads or determining the original RNA concentration of the samples (Everaert et al., 2019; Hulstaert et al., 2020). Everaert et al. provided an example of determining the RNA recovery rate of their library preparation via the correlation between expected and observed spike‐in genetic materials; a high correlation from the spike‐in would suggest outstanding RNA recovery for all samples from the same batch processed using the same library preparation and sequencing workflow (Everaert et al., 2019).

8.4. Challenge 4: EV‐RNA alignment and quantification approaches are not well standardized

The existing small RNAseq alignment methods are largely developed for cellular small RNAs (Eldh et al., 2012; Srinivasan et al., 2019), which are inherently different RNA subtypes than those found in EVs (Chen et al., 2022). Small RNA sequences suffer from a multimapping read percentage due to their short length aligning in multiple genomic regions (Ziemann et al., 2016). The short read alignment problem is well established in bioinformatics and has led to the development of diverse algorithms to carefully weight multimapping reads in the vicinity of uniquely mapping reads and thereby increase specificity and sensitivity (Ziemann et al., 2016; Handzlik et al., 2020; Deschamps‐Francoeur et al., 2020). However, none of these methods have been tested in EV‐RNAs or fragmented RNA. More importantly, short‐length RNAs are often confused with degraded and fragmented RNAs. This results in low number of alignments or low mapping quality compared to cellular RNA, which is misinterpreted as failed sequencing. Further, sequencing facilities often use these profiles to quality control cellular RNA and misidentify these patterns as arising due to fragmentation or degradation leading to the discarding of short‐length EV‐RNAs. Thus, new quality control approaches that are tailored for short‐length RNAs are critically needed. Finally, available databases may differ not only in their curation methods, but also in the variety of aligner tools and methodologies used for data preprocessing. For example, the exRNA Atlas employs the exceRpt (Rozowsky et al., 2019) aligner, while the HumanBiofluid RNA Atlas (Hulstaert et al., 2020) utilizes STAR and Bowtie aligners for mapping reads to the reference genome. Benchmarking studies, such as the one cited (Bezuglov et al., 2023), have demonstrated that the choice of aligner can significantly affect the recovery of reads from different RNA classes. Therefore, comprehensive integration and comparison of these resources are essential to address discrepancies between studies utilizing specific databases. Possible solutions and recommendations: To address these challenges, there is an urgent need to develop novel approaches and extensively benchmark these technologies tailoring them to EV transcriptomes. Potential solutions to this problem include using short read‐specific aligners such as bowtie or BWA, which can improve the alignment rate of short sequences under 50 bp (Lu et al., 2018; Bezuglov et al., 2023). Similar methodology is used recently by (Dogra et al. 2024) to identify EV‐associated ‘dark matter’ RNA or EV‐associated unannotated genomic regions (EV‐UGRs). We recommend that using positive and negative controls for sequencing such as human reference UHRR, non‐human miRNA or environmental controls can help understand better when the low mapping is due to low‐quality RNA or a lack of material and quantify true EV‐RNAs. Similarly, We recommend several databases to verify the presence of common contaminants or known bacterial specifies, such as UniVec (https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/) or microbial genomes (https://www.ncbi.nlm.nih.gov/genome/microbes/), respectively. These databases can be used to further filter or characterize the EV transcriptome. Yet, new experimental and computational approaches are needed to discover, characterize and validate previously ignored regions in the genome as possible biomarkers of disease. Such standardized bioinformatics pipelines need to be established, tested and proposed by MISEV and other EV communities as collaborative efforts.

8.5. Challenge 5: EV‐RNA differential expression, gene set enrichment and signatures require careful considerations

EV transcriptomics analysis offers crucial insights into cellular functions and disease mechanisms by examining RNA content associated with EVs (Bellingham et al., 2012). This approach reveals the interactions between genes and pathways, enhancing our understanding of health and disease at the genetic and molecular levels (Subramaniana et al., 2005). It aids in identifying new diagnostic markers and potential therapeutic targets (Subramaniana et al., 2005). However, analysing the EVP transcriptome computationally is more challenging than traditional cellular transcriptomics (Padilla et al., 2023). The diversity of EVP isolation and library preparation methods, along with the heterogeneity of RNA types in EVP populations, presents unique challenges (Turchinovich et al., 2019). These factors, combined with the choice of sequence aligner and annotation database for various EVP RNA types, can significantly affect EVP RNA mapping, size distribution and abundance (Everaert et al., 2019; Mugoni et al., 2022). Consequently, these variations influence the comparison of transcriptomic analyses across different studies unless specific details – such as the isolation source, method, type of EVP population and RNA species – are explicitly stated. However, recent developments in online EVP‐specific resources (discussed in Section 6), databases and pipelines for processing EVP‐derived RNA‐seq data have begun to alleviate these challenges. Possible solutions and recommendations: When compared with their cell of origin, EVs carry distinct proteo‐transcriptome (Chen et al., 2022). However, a comparison of cellular and EV‐RNA must be conducted with caution. For instance, EVs carry relatively smaller RNAs than their cell of origin. The lower detection limits of EV‐RNA could lead to biased results and their interpretation is under intense debate currently (Chen et al., 2022). The recent studies (Chen et al., 2022; Chen et al., 2023; Bezuglov et al., 2023), using benchmarking approaches, recommend tools for small RNA‐seq analysis, including trimming, filtering, mapping, transcript abundance quantification and differential expression analysis (Bezuglov et al., 2023). A general recommendation is to perform careful data cleaning for non‐species specific transcriptomes and contaminants, as well as performing a full transcriptome analysis not limited to mRNAs and using reference mapping and reference agnostic approaches such as find‐then‐annotate, de novo discovery or read clustering to maximize the identification of EV‐RNAs (Von Felden et al., 2022; Wajnberg et al., 2023).

8.6. Challenge 6: Reproducible PCR validation of genes identified from EV‐RNA sequencing

Owing to its powerful impact and simplicity, RT‐qPCR validation of EV‐RNAs (identified through RNA sequencing) is highly desirable. However, the RT‐qPCR validation of identified EV‐RNA may not produce the expected results if only a part of gene is present in EVs. Possible solutions and recommendations: EVs have been shown to carry intact and fragmented RNA (Kim et al., 2017; Prieto‐Vila et al., 2021). Hence, during the genomic analyses, only specific genetic loci of a gene may show high expression. We recommend designing PCR primers by carefully identifying the genomic region (genetic loci) of RNA that exhibits the highest expression in EVs. We do not recommend PCR primer design by cumulative total expression of a given gene.

9. CONCLUSION AND FUTURE DIRECTIONS

In this article, we provide clarity on the transcriptomics landscape of EVs through an in‐depth analysis of EVPs, their small RNAs landscape and the use of several transcriptomics technologies. Overall, we highlighted comprehensive online resources, current bioinformatics pipelines specific to EVP‐derived RNA species and clinical applications of EVPs. Finally, we outlined challenges and recommendations for continued EVP‐transcriptomic analyses, aiming to propel the field forward and enhance the accessibility and comprehensiveness of published works for cross‐comparison. Such challenges include small amounts of RNA from isolation methods, and a lack of appropriate bioinformatics pipelines, quality controls and sequencing protocols. Detailed descriptions of the current state of EVP transcriptomics will lead to a better understanding of how the RNA cargo of EVPs can be used in modern and targeted diagnostics and therapeutics. The success of the Human Genome Project, cancer moonshot and Genotype‐Tissue Expression (GTEx) have revolutionized our understanding of the gene expression in innumerable diseases (Veziroglu & Mias, 2020; Lowe et al., 2017; Adams et al., 1991; Pavlova et al., 2022). In this context, there is an urgent need for cross‐institutional, disease‐independent, interdisciplinary launch of an EV‐RNA ‘moonshot’ project.

AUTHOR CONTRIBUTIONS

Navneet Dogra conceived the study. Rebecca T. Miceli, Yohei Nose, Swapnil Tichkule, Edgar Gonzalez‐Kozlova, Tzu‐Yi Chen and Navneet Dogra wrote the manuscript. Rebecca T. Miceli, Yohei Nose, Swapnil Tichkule, Briana Brown, John F. Fullard, Marilyn D. Saulsbury, Simon O. Heyliger, Sacha Gnjatic, Natasha Kyprianou, Carlos Cordon‐Cardo, Susmita Sahoo, Emanuela Taioli, Panos Roussos, Gustavo Stolovitzky, Edgar Gonzalez‐Kozlova, Tzu‐Yi Chen and Navneet Dogra reviewed, edited, read and approved the manuscript and guided the interpretation of the manuscript.

CONFLICT OF INTEREST STATEMENT

S.G. reports past consultancy or advisory roles for Taiho Pharmaceuticals; research funding from Regeneron Pharmaceuticals, Boehringer Ingelheim, Bristol Myers Squibb, Celgene, Genentech, EMD Serono, Pfizer and Takeda, unrelated to the current work. All other authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. N.D. and G.S. are awarded a patent entitled ‘Exosome vessels for delivery of molecular cargo’, US Patent 11,766,484.

ACKNOWLEDGEMENTS

We would like to acknowledge the following funding agencies and foundations: NIH P20CA264076 (N.D., E.T., M.D.S., and S.O.H.), NIH R21 AGO78848 (N.D. and E.G.‐K.). S.G. was partially supported by the following NIH Grants: CA224319, DK124165 and CA196521. S.S. was supported by NIH R01HL148786, NIH R01DK133885 and Evox Therapeutics. Figures were constructed using the BioRender Program.

Miceli, R. T. , Chen, T.‐Y. , Nose, Y. , Tichkule, S. , Brown, B. , Fullard, J. F. , Saulsbury, M. D. , Heyliger, S. O. , Gnjatic, S. , Kyprianou, N. , Cordon‐Cardo, C. , Sahoo, S. , Taioli, E. , Roussos, P. , Stolovitzky, G. , Gonzalez‐Kozlova, E. , & Dogra, N. (2024). Extracellular vesicles, RNA sequencing, and bioinformatic analyses: Challenges, solutions, and recommendations. Journal of Extracellular Vesicles, 13, e70005. 10.1002/jev2.70005

Rebecca T. Miceli, Tzu‐Yi Chen, Yohei Nose, and Swapnil Tichkule contributed equally to this study.

Contributor Information

Edgar Gonzalez‐Kozlova, Email: edgar.gonzalez-kozlova@mssm.edu.

Navneet Dogra, Email: navneet.dogra@mssm.edu.

REFERENCES

  1. Abdelgawad, M. , Bakry, N. S. , Farghali, A. A. , Abdel‐Latif, A. , & Lotfy, A. (2021). Mesenchymal stem cell‐based therapy and exosomes in COVID‐19: Current trends and prospects. Stem Cell Research & Therapy, 12(1), 469. 10.1186/s13287-021-02542-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abels, E. R. , & Breakefield, X. O. (2016). Introduction to extracellular vesicles: Biogenesis, RNA cargo selection, content, release, and uptake. Physiology & Behavior, 176(1), 139–148. 10.1007/s10571-016-0366-z.Introduction [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Abels, E. R. , Maas, S. L. N. , Nieland, L. , Wei, Z. , Cheah, P. S. , Tai, E. , Kolsteeg, C.‐J. , Dusoswa, S. A. , Ting, D. T. , Hickman, S. , El Khoury, J. , Krichevsky, A. M. , Broekman, M. L. D. , & Breakefield, X. O. (2019). Glioblastoma‐associated microglia reprogramming is mediated by functional transfer of extracellular MiR‐21. Cell Reports, 28(12), 3105–3119. 10.1016/j.celrep.2019.08.036 [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Abramowicz, A. , & Story, M. D. (2020). The Long and short of it: The emerging roles of non‐coding RNA in small extracellular vesicles. Cancers (Basel), 12(6), 1–17. 10.3390/cancers12061445 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Abrams, Z. B. , Johnson, T. S. , Huang, K. , Payne, P. R. O. , & Coombes, K. (2019). A protocol to evaluate RNA sequencing normalization methods. BMC Bioinformatics [Electronic Resource], 20(Suppl 24), 1–7. 10.1186/s12859-019-3247-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Adams, M. D. , Kelley, J. M. , Gocayne, J. D. , Dubnick, M. A. K. , Polymeropoulos, M. H. , Xiao, H. , Merril, C. R. , Wu, A. , Olde, B. , Moreno, R. F. , Kerlavage, A. R. , McCombie, W. R. , & Venter, J. C. (1991). Complementary DNA sequencing: Expressed sequence tags and human genome project. Science, 252(5013), 1651–1656. 10.1126/science.2047873 [DOI] [PubMed] [Google Scholar]
  7. Aday, S. , Hazan‐Halevy, I. , Chamorro‐Jorganes, A. , Anwar, M. , Goldsmith, M. , Beazley‐Long, N. , Sahoo, S. , Dogra, N. , Sweaad, W. , Catapano, F. , Ozaki‐Tan, S. , Angelini, G. D. , Madeddu, P. , Benest, A. V. , Peer, D. , & Emanueli, C. (2021). Bioinspired artificial exosomes based on lipid nanoparticles carrying Let‐7b‐5p promote angiogenesis in vitro and in vivo. Molecular Therapy, 29(7), 2239–2252. 10.1016/j.ymthe.2021.03.015 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ahadi, A. , Brennan, S. , Kennedy, P. J. , Hutvagner, G. , & Tran, N. (2016). Long non‐coding RNAs harboring miRNA seed regions are enriched in prostate cancer exosomes. Scientific Reports, 6, 24922. 10.1038/srep24922 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Akers, J. C. , Gonda, D. , Kim, R. , Carter, B. S. , & Chen, C. C. (2013). Biogenesis of extracellular vesicles (EV): Exosomes, microvesicles, retrovirus‐like vesicles, and apoptotic bodies. Journal of Neuro‐Oncology, 27(4), 281–289. 10.1086/jce2016274281 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Albanese, M. , Chen, Y.‐F. A. , Hüls, C. , Gärtner, K. , Tagawa, T. , Mejias‐Perez, E. , Keppler, O. T. , Göbel, C. , Zeidler, R. , Shein, M. , Schütz, A. K. , & Hammerschmidt, W. (2021). MicroRNAs are minor constituents of extracellular vesicles that are rarely delivered to target cells. PLos Genetics, 17(12), e1009951. 10.1371/journal.pgen.1009951 [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Alem, F. , Olanrewaju, A. A. , Omole, S. , Hobbs, H. E. , Ahsan, N. , Matulis, G. , Brantner, C. A. , Zhou, W. , Petricoin, E. F. , Liotta, L. A. , Caputi, M. , Bavari, S. , Wu, Y. , Kashanchi, F. , & Hakami, R. M. (2021). Exosomes originating from infection with the cytoplasmic single‐stranded RNA virus rift valley fever virus (RVFV) protect recipient cells by inducing RIG‐I mediated IFN‐B response that leads to activation of autophagy. Cell & Bioscience, 11(1), 220. 10.1186/s13578-021-00732-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Alexander, R. P. , Kitchen, R. R. , Tosar, J. P. , Roth, M. , Mestdagh, P. , Max, K. E. A. , Rozowsky, J. , Kaczor‐Urbanowicz, K. E. , Chang, J. , Balaj, L. , Losic, B. , Nostrand, E. L. V. , LaPlante, E. , Mateescu, B. , White, B. S. , Yu, R. , Milosavljevic, A. , Stolovitzky, G. , & Spengler, R. M. (2022). Open problems in extracellular RNA data analysis: Insights from an ERCC online workshop. Frontiers in Genetics, 3(12), 778416. 10.3389/fgene.2021.778416 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Alvarez‐Erviti, L. , Seow, Y. , Yin, H. , Betts, C. , Lakhal, S. , & Wood, M. J. A. (2011). Delivery of SiRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 29, 341–345. 10.1038/nbt.1807 [DOI] [PubMed] [Google Scholar]
  14. Antonyak, M. A. , Li, B. , Boroughs, L. K. , Johnson, J. L. , Druso, J. E. , Bryant, K. L. , Holowka, D. A. , & Cerione, R. A. (2011). Cancer cell‐derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. PNAS, 108(12), 4852–4857. 10.1073/pnas.1017667108 [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Arai, Y. , Sampaio, J. L. , Wilsch‐Bräuninger, M. , Ettinger, A. W. , Haffner, C. , & Huttner, W. B. (2015). Lipidome of midbody released from neural stem and progenitor cells during mammalian cortical neurogenesis. Frontiers in Cellular Neuroscience, 9, 325. 10.3389/fncel.2015.00325 [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Athota, P. , Nguyen, N. M. , Schaal, V. L. , Jagadesan, S. , Guda, C. , Yelamanchili, S. V. , & Pendyala, G. (2023). Novel RNA‐seq signatures post‐methamphetamine and oxycodone use in a model of HIV‐associated neurocognitive disorders. Viruses, 15(9), 1948. 10.3390/v15091948 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. van Balkom, B. W. , Eisele, A. S. , Pegtel, D. M. , Bervoets, S. , & Verhaar, M. C. (2015). Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. Journal of Extracellular Vesicles, 4, 26760. 10.3402/jev.v4.26760 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Batagov, A. O. , & Kurochkin, I. V. (2013). Exosomes secreted by human cells transport largely MRNA fragments that are enriched in the 3′‐untranslated regions. Biology Direct, 8(1), 1–8. 10.1186/1745-6150-8-12 [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Bellingham, S. A. , Coleman, B. M. , & Hill, A. F. (2012). Small RNA deep sequencing reveals a distinct MiRNA signature released in exosomes from prion‐infected neuronal cells. Nucleic Acids Research, 40(21), 10937–10949. 10.1093/nar/gks832 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Berget, S. M. , Moore, C. , & Sharp, P. A. (1977). Spliced segments at the 5’ terminus of adenovirus 2 late MRNA. Proceedings of the National Academy of Sciences, 74(8), 3171–3175. 10.1073/pnas.74.8.3171 [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Besse, B. , Charrier, M. , Lapierre, V. , Dansin, E. , Planchard, D. , Chevalier, T. L. , Livartoski, A. , Laplanche, A. , Ploix, S. , Vimond, N. , Théry, C. , Lacroix, L. , Zoernig, I. , Dhodapkar, K. , Dhodapkar, M. , Viaud, S. , Soria, J. , Reiners, K. S. , Strandmann, E. P. V. , … Chaput, N. (2016). Dendritic cell‐derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology, 5(4), 1–13. 10.1080/2162402X.2015.1071008 [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Bezuglov, V. , Stupnikov, A. , Skakov, I. , Shtratnikova, V. , Pilsner, J. R. , Suvorov, A. , & Sergeyev, O. (2023). Approaches for SRNA analysis of human RNA‐seq data: Comparison, benchmarking. International Journal of Molecular Sciences, 24(4), 4195. 10.3390/ijms24044195 [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Böing, A. N. , Pol, E. , van der Grootemaat, A. E. , Couman, F. A. W. , Sturk, A. , & Nieuwland, R. (2014). Single‐step isolation of extracellular vesicles by size‐exclusion chromatography. Journal of Extracellular Vesicles, 3, 23430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Boivin, V. , Faucher‐Giguère, L. , Scott, M. , & Abou‐Elela, S. (2019). The cellular landscape of mid‐size noncoding RNA. WIREs RNA, 10, 1–17. 10.1002/wrna.1530 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Bolger, A. M. , Lohse, M. , & Usadel, B. (2014). Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics, 30(15), 2114–2120. 10.1093/bioinformatics/btu170 [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Bryl‐Górecka, P. , Sathanoori, R. , Al‐Mashat, M. , Olde, B. , Jögi, J. , Evander, M. , Laurellc, T. , & Erlingea, D. (2018). Effect of exercise on the plasma vesicular proteome: A methodological study comparing acoustic trapping and centrifugation. Lab on A Chip, 18(20), 3101–3111. 10.1039/C8LC00686E [DOI] [PubMed] [Google Scholar]
  27. Cammarata, G. , de Miguel‐Perez, D. , Russo, A. , Peleg, A. , Dolo, V. , Rolfo, C. , & Taverna, S. (2022). Emerging noncoding RNAs contained in extracellular vesicles: Rising stars as biomarkers in lung cancer liquid biopsy. Therapeutic Advances in Medical Oncology, 14, 1–20. 10.1177/17588359221131229 [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Camussi, G. , Deregibus, M.‐C. , Bruno, S. , Grange, C. , Fonsato, V. , & Tetta, C. (2011). Exosome/microvesicle‐mediated epigenetic reprogramming of cells. American Journal of Cancer Research, 1(1), 98–110. [PMC free article] [PubMed] [Google Scholar]
  29. Cha, D. J. , Franklin, J. L. , Dou, Y. , Liu, Q. , Higginbotham, J. N. , Beckler, M. D. , Weaver, A. M. , Vickers, K. , Prasad, N. , Levy, S. , Zhang, B. , Coffey, R. J. , & Patton, J. G. (2015). KRAS‐dependent sorting of MiRNA to exosomes. Elife, 4, e07197. 10.7554/eLife.07197.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Chabronova, A. , Holmes, T. L. , Hoang, D. M. , Denning, C. , James, V. , Smith, J. G. W. , & Peffers, M. J. (2024). SnoRNAs in cardiovascular development, function, and disease. Trends in Molecular Medicine, 30(6), 562–578. 10.1016/j.molmed.2024.03.004 [DOI] [PubMed] [Google Scholar]
  31. Chand, S. , Gowen, A. , Savine, M. , Moore, D. , Clark, A. , Huynh, W. , Wu, N. , Odegaard, K. , Weyrich, L. , Bevins, R. A. , Fox, H. S. , Pendyala, G. , & Yelamanchili, S. V. (2021). A comprehensive study to delineate the role of an extracellular vesicle‐associated microRNA‐29a in chronic methamphetamine use disorder. Journal of Extracellular Vesicles, 10(14), e12177. 10.1002/jev2.12177 [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Chen, G. , Huang, A. C. , Zhang, W. , Zhang, G. , Wu, M. , Xu, W. , Yu, Z. , Yang, J. , Wang, B. , Sun, H. , Xia, H. , Man, Q. , Zhong, W. , Antelo, L. F. , Wu, B. , Xiong, X. , Liu, X. , Guan, L. , Li, T. , … Guo, W. (2018). Exosomal PD‐L1 contributes to immunosuppression and is associated with anti‐PD‐1 response. Nature, 560(7718), 382–386. 10.1038/s41586-018-0392-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Chen, T. Y. , Gonzalez‐Kozlova, E. , Soleymani, T. , La Salvia, S. , Kyprianou, N. , Sahoo, S. , Tewari, A. K. , Cordon‐Cardo, C. , Stolovitzky, G. , & Dogra, N. (2022). Extracellular vesicles carry distinct proteo‐transcriptomic signatures that are different from their cancer cell of origin. iScience, 25(6), 104414. 10.1016/j.isci.2022.104414 [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Chen, T.‐Y. , Mihalopoulos, M. , Zuluaga, L. , Rich, J. , Ganta, T. , Mehrazin, R. , Tsao, C.‐K. , Tewari, A. , Gonzalez‐Kozlova, E. , Badani, K. , Dogra, N. , & Kyprianou, N. (2023). Clinical significance of extracellular vesicles in prostate and renal cancer. International Journal of Molecular Sciences, 24(19), 14713. 10.3390/ijms241914713 [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Cheng, L. , & Hill, A. F. (2022). Therapeutically harnessing extracellular vesicles. Nature Reviews Drug Discovery, 21(5), 379–399. 10.1038/s41573-022-00410-w [DOI] [PubMed] [Google Scholar]
  36. Chevillet, J. R. , Kang, Q. , Ruf, I. K. , Briggs, H. A. , Vojtech, L. N. , Hughes, S. M. , Cheng, H. H. , Arroyo, J. D. , Meredith, E. K. , Gallichotte, E. N. , Pogosova‐Agadjanyan, E. L. , Morrissey, C. , Stirewalt, D. L. , Hladik, F. , Yu, E. Y. , Higano, C. S. , & Tewari, M. (2014). Quantitative and stoichiometric analysis of the microRNA content of exosomes. PNAS, 111(41), 14888–14893. 10.1073/pnas.1408301111 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Chiang, C.‐L. , Ma, Y. , Hou, Y.‐C. , Pan, J. , Chen, S.‐Y. , Chien, M.‐H. , Zhang, Z.‐X. , Hsu, W.‐H. , Wang, X. , Zhang, J. , Li, H. , Sun, L. , Fallen, S. , Lee, I. , Chen, X.‐Y. , Chu, Y.‐S. , Zhang, C. , Cheng, T.‐S. , Jiang, W. , … Lee, L. J. (2023). Dual targeted extracellular vesicles regulate oncogenic genes in advanced pancreatic cancer. Nature Communications, 14(1), 6692. 10.1038/s41467-023-42402-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Choi, D. S. , Kim, D. K. , Kim, Y. K. , & Gho, Y. S. (2013). Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics, 13(10–11), 1554–1571. 10.1002/pmic.201200329 [DOI] [PubMed] [Google Scholar]
  39. Claude, A. (1970). Growth and differentiation of cytoplasmic membranes in the course of lipoprotein granule synthesis. Journal of Cell Biology, 47(3), 745–766. 10.1083/jcb.47.3.745 [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Colombo, M. , Raposo, G. , & Théry, C. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology, 30, 255–289. 10.1146/annurev-cellbio-101512-122326 [DOI] [PubMed] [Google Scholar]
  41. Cone, A. S. , Yuan, X. , Sun, L. , Duke, L. C. , Vreones, M. P. , Carrier, A. N. , Kenyon, S. M. , Carver, S. R. , Benthem, S. D. , Stimmell, A. C. , Moseley, S. C. , Hike, D. , Grant, S. C. , Wilber, A. A. , Olcese, J. M. , & Meckes, D. G., Jr. (2021). Theranostics mesenchymal stem cell‐derived extracellular vesicles ameliorate Alzheimer's disease‐like phenotypes in a preclinical mouse model. Theranostics, 11(17), 8129–8142. 10.7150/thno.62069 [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Crescitelli, R. , Lässer, C. , & Lötvall, J. (2021). Isolation and characterization of extracellular vesicle subpopulations from tissues. Nature Protocols, 16(3), 1548–1580. 10.1038/s41596-020-00466-1 [DOI] [PubMed] [Google Scholar]
  43. Crescitelli, R. , Lässer, C. , Szabó, T. G. , Kittel, A. , Eldh, M. , Dianzani, I. , Buzás, E. I. , & Lötvall, J. (2013). Distinct RNA profiles in subpopulations of extracellular vesicles: Apoptotic bodies, microvesicles and exosomes. Journal of Extracellular Vesicles, 12(2), 1–9. 10.3402/jev.v2i0.20677 [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Cvjetkovic, A. , Lötvall, J. , & Lässer, C. (2014). The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. Journal of Extracellular Vesicles, 1(1), 23111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. D'Acunzo, P. , Pérez‐González, R. , Kim, Y. , Hargash, T. , Miller, C. , Alldred, M. J. , Erdjument‐Bromage, H. , Penikalapati, S. C. , Pawlik, M. , Saito, M. , Saito, M. , Ginsberg, S. D. , Neubert, T. A. , Goulbourne, C. N. , & Levy, E. (2021). Mitovesicles are a novel population of extracellular vesicles of mitochondrial origin altered in down syndrome. Science Advances, 7(7), 1–18. 10.1126/sciadv.abe5085 [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Dai, S. , Wei, D. , Wu, Z. , Zhou, X. , Wei, X. , Huang, H. , & Li, G. (2008). Phase I clinical trial of autologous ascites‐derived exosomes combined with GM‐CSF for colorectal cancer. Molecular Therapy, 4, 782–790. 10.1038/mt.2008.1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Dalton, A. J. (1975). Microvesicles and vesicles of multivesicular bodies versus “virus‐like” particles. Journal of the National Cancer Institute, 54(5), 1137–1148. 10.1093/jnci/54.5.1137 [DOI] [PubMed] [Google Scholar]
  48. Danielson, K. , Shah, R. , Yeri, A. , Liu, X. , Garcia, F. C. , Silverman, M. , Tanriverdi, K. , Das, A. , Xiao, C. , Jerosch‐Herold, M. , Heydari, B. , Abbasi, S. , Keuren‐Jensen, K. V. , Freedman, J. E. , Wang, Y. E. , Rosenzweig, A. , Kwong, R. Y. , & Das, S. (2018). Plasma circulating extracellular RNAs in left ventricular remodeling post‐myocardial infarction. eBioMedicine, 32, 172–181. 10.1016/j.ebiom.2018.05.013 [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Dellar, E. R. , Hill, C. , Melling, G. E. , Carter, D. R. , & Baena‐Lopez, L. A. (2022). Unpacking extracellular vesicles: RNA cargo loading and function. Journal of Extracellular Biology, 5(1), e40. 10.1002/jex2.40 [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Deschamps‐Francoeur, G. , Simoneau, J. , & Scott, M. S. (2020). Handling multi‐mapped reads in RNA‐seq. Computational and Structural Biotechnology Journal, 12(18), 1569–1576. 10.1016/j.csbj.2020.06.014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Dogra, N. , Ahsen, M. E. , Kozlova, E. E. G. , Chen, T. , Allette, K. , Olsen, R. , Han, D. , Kim, S.‐C. , Gifford, S. M. , Smith, J. T. , Wunsch, B. H. , Weil, R. , Bhatt, K. , Yadav, K. K. , Vlachos, K. , Nair, S. , Gordon, R. E. , Smith, M. , & Stolovitzky, G. (2020). ExRNA signatures in extracellular vesicles and their tumor‐lineage from prostate cancer. medRxiv, 2020.09. 10.1101/2020.09.28.20190009 [DOI]
  52. Dogra, N. , Chen, T. Y. , Gonzalez‐Kozlova, E. , Miceli, R. , Cordon‐Cardo, C. , Tewari, A. K. , Losic, B. , & Stolovitzky, G. (2024). Extracellular vesicles carry transcriptional ‘dark matter’ revealing tissue‐specific information. Journal of Extracellular Vesicles, 13(8), e12481. 10.1002/jev2.12481 [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Dogra, N. , Ledesma‐Feliciano, C. , & Sen, R. (2021). Developmental aspects of Sars‐Cov‐2, potential role of exosomes and their impact on the human transcriptome. Journal of Developmental Biology, 9(4), 54. 10.3390/jdb9040054 [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Driedonks, T. A. P. , & Nolte‐′t Hoen, E. N. M. (2019). Circulating Y‐RNAs in extracellular vesicles and ribonucleoprotein complexes; implications for the immune system. Frontiers in Immunology, 10, 1–15. 10.3389/fimmu.2018.03164 [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Dubreuil, V. , Marzesco, A.‐M. , Corbeil, D. , Huttner, W. B. , & Wilsch‐Bräuninger, M. (2007). Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin‐1. Journal of Cell Biology, 176(4), 483–495. 10.1083/jcb.200608137 [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Eldh, M. , Lotvall, J. , Malmhall, C. , & Ekstrom, K. (2012). Importance of RNA isolation methods for analysis of exosomal RNA. Evaluation of different methods. Molecular Immunology, 50(4), 278–286. 10.1016/j.molimm.2012.02.001 [DOI] [PubMed] [Google Scholar]
  57. Escudier, B. , Dorval, T. , Chaput, N. , André, F. , Caby, M. , Novault, S. , Flament, C. , Leboulaire, C. , Borg, C. , Amigorena, S. , Boccaccio, C. , Bonnerot, C. , Dhellin, O. , Movassagh, M. , Piperno, S. , Robert, C. , Serra, V. , Valente, N. , Pecq, J. L. , & Zitvogel, L. (2005). Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived‐exosomes: Results of the first phase I clinical trial. Journal of Translational Medicine, 13, 1–13. 10.1186/1479-5876-3-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Everaert, C. , Helsmoortel, H. , Decock, A. , Hulstaert, E. , Van Paemel, R. , Verniers, K. , Nuytens, J. , Anckaert, J. , Nijs, N. , Tulkens, J. , Dhondt, B. , Hendrix, A. , Mestdagh, P. , & Vandesompele, J. (2019). Performance assessment of total RNA sequencing of human biofluids and extracellular vesicles. Scientific Reports, 9(1), 1–16. 10.1038/s41598-019-53892-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Farmer, T. , Vaeth, K. F. , Han, K.‐J. , Goering, R. , Taliaferro, M. J. , & Prekeris, R. (2023). The role of midbody‐associated MRNAs in regulating abscission. Journal of Cell Biology, 222(12), e202306123. 10.1083/jcb.202306123 [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Feingold, K. R. (2024). Introduction to lipids and lipoproteins. In Endotext. MDText.com, Inc. [Google Scholar]
  61. Fevrier, B. , Vilette, D. , Archer, F. , Loew, D. , Faigle, W. , Vidal, M. , Laude, H. , & Raposo, G. (2004). Cells release prions in association with exosomes. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9683–9688. 10.1073/pnas.0308413101 [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Gaglani, S. , Gonzalez‐Kozlova, E. , Lundon, D. J. , Tewari, A. K. , Dogra, N. , & Kyprianou, N. (2021). Exosomes as a next‐generation diagnostic and therapeutic tool in prostate cancer. International Journal of Molecular Sciences, 22(18), 10131. 10.3390/ijms221810131 [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Gámez‐Valero, A. , Monguió‐Tortajada, M. , Carreras‐Planella, L. , Franquesa, M. , Beyer, K. , & Borràs, F. E. (2016). Size‐exclusion chromatography‐based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents. Scientific Reports, 6, 33641. 10.1038/srep33641 [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Gezer, U. , Özgür, E. , Cetinkaya, M. , Isin, M. , & Dalay, N. (2014). Long non‐coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biology International, 38(9), 1076–1079. 10.1002/cbin.10301 [DOI] [PubMed] [Google Scholar]
  65. Ghosh, A. , Davey, M. , Chute, I. C. , Griffiths, S. G. , Lewis, S. , Chacko, S. , Barnett, D. , Crapoulet, N. , Fournier, S. , Joy, A. , Caissie, M. C. , Ferguson, A. D. , Daigle, M. , Meli, M. V. , Lewis, S. M. , & Ouellette, R. J. (2014). Rapid isolation of extracellular vesicles from cell culture and Biological fluids using a synthetic peptide with specific affinity for heat shock proteins. PLoS ONE, 9(10), 110443. 10.1371/journal.pone.0110443 [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Gomez, K. E. , Wu, F. , Keysar, S. B. , Morton, J. J. , Miller, B. , Chimed, T.‐S. , Le, P. N. , Neito, C. , Chowdhury, F. N. , Tyagi, A. , Lyons, T. R. , Young, C. D. , Zhou, H. , Somerset, H. L. , Wang, X.‐J. , & Jimeno, A. (2018). Cancer Cell CD44 mediates macrophage/monocyte‐driven regulation of head and neck cancer stem cells. Physiology & Behavior, 176(1), 139–148. 10.1158/0008-5472.CAN-20-1079.Cancer [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Guan, L. , Wu, B. , Li, T. , Beer, L. A. , Sharma, G. , Li, M. , Lee, C. N. , Liu, S. , Yang, C. , Huang, L. , Frederick, D. T. , Boland, G. M. , Shao, G. , Svitkina, T. M. , Cai, K. Q. , Chen, F. , Dong, M. , Mills, G. B. , Schuchter, L. M. , … Guo, W. (2022). HRS phosphorylation drives immunosuppressive exosome secretion and restricts CD8+ T‐cell infiltration into tumors. Nature Communications, 13, 1–12. 10.1038/s41467-022-31713-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Guan, W. K. , Lu, J. , & Yang, C. X. (2021). A new pathway for mitochondrial quality control mitochondrial‐derived vesicle. Acta Anatomica Sinica, 52(1), 152–156. 10.16098/j.issn.0529-1356.2021.01.025 [DOI] [Google Scholar]
  69. Gulìa, C. , Signore, F. , Gaffi, M. , Gigli, S. , Votino, R. , Nucciotti, R. , Bertacca, L. , Zaami, S. , Baffa, A. , Santini, E. , Porrello, A. , & Piergentili, R. Y (2020). RNA: An overview of their role as potential biomarkers and molecular targets in human cancers. Cancers (Basel), 12(5), 1–21. 10.3390/cancers12051238 [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Guo, C. , Lv, H. , Bai, Y. , Guo, M. , Li, P. , Tong, S. , & He, K. (2023). Circular RNAs in extracellular vesicles: Promising candidate biomarkers for schizophrenia. Frontiers in Genetics, 13, 1–8. 10.3389/fgene.2022.997322 [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Guo, T. , Tang, X. H. , Gao, X. Y. , Zhou, Y. , Jin, B. , Deng, Z. Q. , Hu, Y. , Xing, X. F. , Li, Z. Y. , & Ji, J. F. (2022). A liquid biopsy signature of circulating exosome‐derived MRNAs, MiRNAs and LncRNAs predict therapeutic efficacy to neoadjuvant chemotherapy in patients with advanced gastric cancer. Molecular Cancer, 21(1), 4–9. 10.1186/s12943-022-01684-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Han, Z. , Chen, H. , Guo, Z. , Shen, J. , Luo, W. , Xie, F. , Wan, Y. , Wang, S. , Li, J. , & He, J. (2022). Circular RNAs and their role in exosomes. Frontiers in Oncology, 12, 848341. 10.3389/fonc.2022.848341 [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Handzlik, J. E. , Tastsoglou, S. , Vlachos, L. S. , & Hatzigoergiou, A. G. (2020). Manatee: Detection and quantification of small non‐coding RNAs from next‐generation sequencing data. Scientific Reports, 10(1), 705. 10.1038/s41598-020-57495-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Hao, Q. , Gudapati, V. , Monsel, A. , Park, J. H. , Hu, S. , Kato, H. , Lee, J. H. , Zhou, L. , He, H. , & Lee, J. W. (2019). Mesenchymal stem cell‐derived extracellular vesicles decrease lung injury in mice. Journal of Immunology, 7(1), 1961–1972. 10.4049/jimmunol.1801534 [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Heyn, J. , Heuschkel, M. A. , & Goettsch, C. (2023). Mitochondrial‐derived vesicles‐link to extracellular vesicles and implications in cardiovascular disease. International Journal of Molecular Sciences, 24(3), 2637. 10.3390/ijms24032637 [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Hildebrandt, A. , Kirchner, B. , Nolte‐'t Hoen, E. N. M. , & Pfaffl, M. W. (2021). An online database and tool to uncover potential reference RNAs and biomarkers in small‐RNA sequencing data sets from extracellular vesicles enriched samples. Journal of Molecular Biology, 433(15), 167070. 10.1016/j.jmb.2021.167070 [DOI] [PubMed] [Google Scholar]
  77. Hirowatari, Y. , Yoshida, H. , Fueki, Y. , Ito, M. , Ogura, Y. , Sakurai, N. , & Miida, T. (2008). Measurement of cholesterol concentrations of major serum lipoprotein classes in haemodialysis patients by anion‐exchange chromatography. Annals of Clinical Biochemistry, 45(6), 571–574. 10.1258/acb.2008.008018 [DOI] [PubMed] [Google Scholar]
  78. Ho, J. , Chaiswing, L. , & St Clair, D. K. (2022). Extracellular vesicles and cancer therapy: Insights into the role of oxidative stress. Antioxidants (Basel), 11(6), 1194. 10.3390/antiox11061194 [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Hoecke, L. V. , Cauwenberghe, C. V. , Börger, V. , Bruggeman, A. , Castelei, J. , Imschoot, G. V. , Wonterghem, E. V. , Dittrich, R. , Claeys, W. , Xie, J. , Giebel, B. , & Vandenbroucke, R. E. (2021). Anti‐inflammatory mesenchymal stromal cell‐derived extracellular vesicles improve pathology in niemann‐pick type C disease. Biomedicines, 9(12), 1864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Nolte‐'t Hoen, E. N. , Buermans, H. P. J. , Waasdorp, M. , Stoorvogel, W. , Wauben, M. H. , & 't Hoen, P. A. (2012). Deep Sequencing of RNA from immune cell‐derived vesicles uncovers the selective incorporation of small non‐coding RNA biotypes with potential regulatory functions. Nucleic Acids Research, 40(18), 9272–9285. 10.1093/nar/gks658 [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Hoshino, A. , Costa‐Silva, B. , Shen, T. L. , Rodrigues, G. , Hashimoto, A. , Tesic Mark, M. , Molina, H. , Kohsaka, S. , Di Giannatale, A. , Ceder, S. , Singh, S. , Williams, C. , Soplop, N. , Uryu, K. , Pharmer, L. , King, T. , Bojmar, L. , Davies, A. E. , Ararso, Y. , … Lyden, D. (2015). Tumour exosome integrins determine organotropic metastasis. Nature, 527(7578), 329–335. 10.1038/nature15756 [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Hoshino, A. , Kim, H. S. , Bojmar, L. , Gyan, K. E. , Cioffi, M. , Hernandez, J. , Zambirinis, C. P. , Rodrigues, G. , Molina, H. , Heissel, S. , Mark, M. T. , Steiner, L. , Benito‐Martin, A. , Lucotti, S. , Di Giannatale, A. , Offer, K. , Nakajima, M. , Williams, C. , Nogués, L. , …, Lyden, D. (2020). Extracellular vesicle and particle biomarkers define multiple human cancers. Cell, 182(4), 1044–1061.e18. 10.1016/j.cell.2020.07.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Hu, Z. , Chen, G. , Zhao, Y. , Gao, H. , Li, L. , Yin, Y. , Jiang, J. , & Wang, L. (2023). Exosome‐derived CircCCAR1 promotes CD8 + T‐cell dysfunction and anti‐PD1 resistance in hepatocellular carcinoma. Molecular Cancer, 22, 1–21. 10.1186/s12943-023-01759-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Huang, Z. , Li, X. , Qiu, M. , Chen, J. , Tian, M. , Han, F. , Ou, Y. , Liu, X. , Zhou, C. , Yuan, H. , Zhuang, J. , & Chen, J. (2020). Weighted gene co‐expression network analysis identifies key genes from extracellular vesicles as potential prognostic biomarkers for congenital pulmonary stenosis. Molecular Medicine Reports, 22(3), 2528–2536. 10.3892/mmr.2020.11332 [DOI] [PubMed] [Google Scholar]
  85. Hulstaert, E. , Morlion, A. , Cobos, F. A. , Verniers, K. , Nuytens, J. , Eynde, E. V. , Yigit, N. , Anckaert, J. , Geerts, A. , Hindryckx, P. , Jacques, P. , Brusselle, G. , Bracke, K. R. , Maes, T. , Malfait, T. , Derveaux, T. , Ninclaus, V. , Van Cauwenbergh, C. , Roelens, K. , … Mestdagh, P. (2020). Charting extracellular transcriptomes in the human biofluid RNA Atlas. Cell Reports, 33(13), 108552. 10.1016/j.celrep.2020.108552 [DOI] [PubMed] [Google Scholar]
  86. Hutvagner, G. , & Simard, M. J. (2008). Argonaute proteins: Key players in RNA silencing. Nature Reviews Molecular Cell Biology, 9(1), 22–32. 10.1038/nrm2321 [DOI] [PubMed] [Google Scholar]
  87. Jeon, P. , Ham, H. J. , Park, S. , & Lee, J. A. (2022). Regulation of cellular ribonucleoprotein granules: From assembly to degradation via post‐translational modification. Cells, 11(13), 2063. 10.3390/cells11132063 [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Jeppesen, D. K. , Fenix, A. M. , Franklin, J. L. , Higginbotham, J. N. , Zhang, Q. , Zimmerman, L. J. , Liebler, D. C. , Ping, J. , Liu, Q. , Evans, R. , Fissell, W. H. , Patton, J. G. , Rome, L. H. , Burnette, D. T. , & Coffey, R. J. (2019). Reassessment of exosome composition. Cell, 177(2), 428–445.e18. 10.1016/j.cell.2019.02.029 [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Jin, X. , Chen, Y. , Chen, H. , Fei, S. , Chen, D. , Cai, X. , Liu, L. , Lin, B. , Su, H. , Zhao, L. , Su, M. , Pan, H. , Shen, L. , Xie, D. , & Xie, C. (2017). Evaluation of tumor‐derived exosomal MiRNA as potential diagnostic biomarkers for early‐stage non‐small cell lung cancer using next‐generation sequencing. Clinical Cancer Research, 23(17), 5311–5319. 10.1158/1078-0432.CCR-17-0577 [DOI] [PubMed] [Google Scholar]
  90. Johnstone, R. M. , Adam, M. , Hammond, J. R. , Orr, L. , & Turbide, C. (1987). Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). Journal of Biological Chemistry, 262(19), 9412–9420. 10.1016/s0021-9258(18)48095-7 [DOI] [PubMed] [Google Scholar]
  91. Joo, T. , Choi, J. H. , Lee, J. H. , Park, S. E. , Jeon, Y. , Jung, S. H. , & Woo, H. G. (2019). SEQprocess: A modularized and customizable pipeline framework for NGS processing in R package. BMC Bioinformatics [Electronic Resource], 20(1), 1–7. 10.1186/s12859-019-2676-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Kalluri, R. , & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367(6478), eaau6977. 10.1126/science.aau6977.The [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Kamerkar, S. , Lebleu, V. S. , Sugimoto, H. , Yang, S. , Ruivo, C. F. , Melo, S. A. , Lee, J. J. , & Kalluri, R. (2017). Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 546(7659), 498–503. 10.1038/nature22341 [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Karimi, N. , Dalirfardouei, R. , Dias, T. , Lötvall, J. , & Lässer, C. (2022). Tetraspanins distinguish separate extracellular vesicle subpopulations in human serum and plasma—contributions of platelet extracellular vesicles in plasma samples. Journal of Extracellular Vesicles, 11(5), 12213. 10.1002/jev2.12213 [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Kaur, S. , Abu‐Shahba, A. G. , Paananen, R. O. , Hongisto, H. , Hiidenmaa, H. , Skottman, H. , Seppänen‐Kaijansinkko, R. , & Mannerström, B. (2018). Small non‐coding RNA landscape of extracellular vesicles from human stem cells. Scientific Reports, 8, 15503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Keerthikumar, S. , Chisanga, D. , Ariyaratne, D. , Al Saffar, H. , Anand, S. , Zhao, K. , Samuel, M. , Pathan, M. , Jois, M. , Chilamkurti, N. , Gangoda, L. , & Mathivanan, S. (2016). ExoCarta: A web‐based compendium of exosomal cargo. Journal of Molecular Biology, 428(4), 688–692. 10.1016/j.jmb.2015.09.019 [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Keerthikumar, S. , Gangoda, L. , Liem, M. , Fonseka, P. , Atukorala, I. , Ozcitti, C. , Mechler, A. , Adda, C. G. , Ang, C. S. , & Mathivanan, S. (2015). Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes. Oncotarget, 6(17), 15375–15396. 10.18632/oncotarget.3801 [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Khadka, A. , Spiers, J. G. , Cheng, L. , & Hill, A. F. (2023). Extracellular vesicles with diagnostic and therapeutic potential for prion diseases. Cell and Tissue Research, 392(1), 247–267. 10.1007/s00441-022-03621-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Kim, D.‐K. , Lee, J. , Simpson, R. J. , Lötvall, J. , & Gho, Y. S. (2015). EVpedia: A community web resource for prokaryotic and eukaryotic extracellular vesicles research. Seminars in Cell & Developmental Biology, 40, 4–7. 10.1016/j.semcdb.2015.02.005 [DOI] [PubMed] [Google Scholar]
  100. Kim, K. M. , Abdelmohsen, K. , Mustapic, M. , Kapogiannis, D. , & Gorospe, M. (2017). RNA in extracellular vesicles. Wiley Interdisciplinary Reviews, 8(4), 1–14. 10.1002/wrna.1413 [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Kim, M. S. , Haney, M. J. , Zhao, Y. , Mahajan, V. , Deygen, I. , Klyachko, N. L. , Inskoe, E. , Piroyan, A. , Sokolsky, M. , Okolie, O. , Hingtgen, S. D. , Kabanov, A. V. , & Batrakova, E. V. (2016). Development of exosome‐encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 12(3), 655–664. 10.1016/j.nano.2015.10.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Korotkevich, G. , Sukhov, V. , Budin, N. , Atryomov, M. N. , & Sergushichev, A. (2021). Fast gene set enrichment analysis. BioRxiv. 10.1101/06012 [DOI]
  103. Kostyushev, D. , Kostyusheva, A. , Brezgin, S. , Smirnov, V. , Volchkova, E. , Lukashev, A. , & Chulanov, V. (2020). Gene editing by extracellular vesicles. International Journal of Molecular Sciences, 21(19), 1–34. 10.3390/ijms21197362 [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Kowal, J. , Arras, G. , Colombo, M. , Jouve, M. , Paul, J. , Primdal‐Bengtson, B. , Dingli, F. , Loew, D. , Tkach, M. , & Théry, C. (2016). Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences of the United States of America, 113(8), E968–E977. 10.1073/pnas.1521230113 [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Kowal, J. , Tkach, M. , & Thery, C. (2014). Biogenesis and secretion of exosomes. Current Opinion in Cell Biology, 116–125. 10.1016/j.ceb.2014.05.004 [DOI] [PubMed] [Google Scholar]
  106. Krishn, S. R. , Salem, I. , Quaglia, F. , Naranjo, N. M. , Agarwal, E. , Liu, Q. , Sarker, S. , Kopenhaver, J. , McCue, P. A. , Weinreb, P. H. , Violette, S. M. , Altieri, D. C. , & Languino, L. R. (2020). The Αvβ6 integrin in cancer cell‐derived small extracellular vesicles enhances angiogenesis. Journal of Extracellular Vesicles, 9(1), 1763594. 10.1080/20013078.2020.1763594 [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Kyprianou, N. , English, H. F. , & Isaacs, J. T. (1990). Programmed cell death during regression of PC‐82 human prostate cancer following androgen ablation. Cancer Research, 15(12), 3748–3758. [PubMed] [Google Scholar]
  108. Langmead, B. , Trapnell, C. , Pop, M. , & Salzberg, S. L. (2009). Ultrafast and memory‐efficient alignment of short DNA sequences to the human genome. Genome Biology, 10, R25. 10.1186/gb-2009-10-3-r25 [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Lässer, C. , O'Neil, S. E. , Ekerljung, L. , Ekström, K. , Sjöstrand, M. , & Lötvall, J. (2011). RNA‐containing exosomes in human nasal secretions. American Journal of Rhinology & Allergy, 25(2), 89–93. 10.2500/ajar.2011.25.3573 [DOI] [PubMed] [Google Scholar]
  110. Lee, J. , Park, S. , Jung, B. , Jeon, Y. , Lee, Y. , Kim, K. , Kim, Y. , Jang, J. , & Kim, C. (2013). Exosomes derived from mesenchymal stem cells suppress angiogenesis by down‐regulating VEGF expression in breast cancer cells. PLoS ONE, 8(12), e84256. 10.1371/journal.pone.0084256 [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Lee, J. H. , Park, J. , & Lee, J.‐W. (2019). Therapeutic use of mesenchymal stem cell‐derived extracellular vesicles in acute lung injury. Transfusion, 59(1), 876–883. 10.1111/trf.14838 [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Lerner, M. R. , Boyle, J. A. , Hardin, J. A. , & Steitz, J. A. (1981). Two novel classes of small ribonucleoproteins detected by antibodies associated with lupus erythematosus. Science, 23(211), 400–402. 10.1126/science.6164096 [DOI] [PubMed] [Google Scholar]
  113. Li, J.‐R. , Tong, C.‐Y. , Sung, T.‐J. , Kang, T.‐Y. , Zhou, X. J. , & Liu, C.‐C. (2019). CMEP: A database for circulating microRNA expression profiling. Bioinformatics, 17(1), 3127–3132. 10.1093/bioinformatics/btz042 [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Li, M. , Zeringer, E. , Barta, T. , Schageman, J. , Cheng, A. , & Vlassov, A. V. (2014). Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130502. 10.1098/rstb.2013.0502 [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Li, Q. , Geng, S. , Yuan, H. , Li, Y. , Zhang, S. , Pu, L. , Ge, J. , Niu, X. , Li, Y. , & Jiang, H. (2019). Circular RNA expression profiles in extracellular vesicles from the plasma of patients with pancreatic ductal adenocarcinoma. FEBS Open Bio, 9(12), 2052–2062. 10.1002/2211-5463.12741 [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Li, W. , Li, C. , Zhou, T. , Liu, X. , Liu, X. , Li, X. , & Chen, D. (2017). Role of exosomal proteins in cancer diagnosis. Molecular Cancer, 16(1), 1–12. 10.1186/s12943-017-0706-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Li, X. , La Salvia, S. , Liang, Y. , Adamiak, M. , Kohlbrenner, E. , Jeong, D. , Chepurko, E. , Ceholski, D. , Lopez‐Gordo, E. , Yoon, S. , Mathiyalagan, P. , Agarwal, N. , Jha, D. , Lodha, S. , Daaboul, G. , Phan, A. , Raisinghani, N. , Zhang, S. , Zangi, L. , … Sahoo, S. (2023). Extracellular vesicle‐encapsulated adeno‐associated viruses for therapeutic gene delivery to the heart. Circulation, 148(5), 405–425. 10.1161/CIRCULATIONAHA.122.063759 [DOI] [PubMed] [Google Scholar]
  118. Li, X. , Salvia, S. L. , Liang, Y. , Adamiak, M. , Kohlbrenner, E. , Jeong, D. , Zhang, S. , Zangi, L. , Kozlova, E. G. , Dubois, N. , & Dogra, N. (2023). Extracellular vesicle—encapsulated AAVs for therapeutic gene delivery to the heart. Circulation, 148, 405–425. 10.1161/CIRCULATIONAHA.122.063759 [DOI] [PubMed] [Google Scholar]
  119. Li, Y. , Zheng, Q. , Bao, C. , Li, S. , Guo, W. , Zhao, J. , Chen, D. , Gu, J. , He, X. , & Huang, S. (2015). Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Research, 25(8), 981–984. 10.1038/cr.2015.82 [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Liangsupree, T. , Multia, E. , & Riekkola, M. L. (2021). Modern isolation and separation techniques for extracellular vesicles. Journal of Chromatography A, 1636, 461773. 10.1016/j.chroma.2020.461773 [DOI] [PubMed] [Google Scholar]
  121. Liu, T. , Zhang, Q. , Zhang, J. , Li, C. , Miao, Y.‐R. , Lei, Q. , Li, Q. , & Guo, A.‐Y. (2019). EVmiRNA: A database of MiRNA profiling in extracellular vesicles. Nucleic Acids Research, 47(D1), 89–93. 10.1093/nar/gky985 [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Logsdon, G. A. , Vollger, M. R. , & Eichler, E. E. (2020). Long‐read human genome sequencing and its applications. Nature Reviews Genetics, 21(10), 597–614. 10.1038/s41576-020-0236-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Lowe, R. , Shirley, N. , Bleackley, M. , Dolan, S. , & Shafee, T. (2017). Transcriptomics technologies. Plos Computational Biology, 13(5), 1–23. 10.1371/journal.pcbi.1005457 [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Lu, Y. , Baras, A. S. , & Halushka, M. K. (2018). MiRge 2.0 for comprehensive analysis of microRNA sequencing data. BMC Bioinformatics [Electronic Resource], 19(1), 1–12. 10.1186/s12859-018-2287-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Lucien, F. , Gustafson, D. , Lenassi, M. , Li, B. , Teske, J. J. , Boilard, E. , Hohenberg, K. C. , von Falcón‐Perez, J. M. , Gualerzi, A. , Reale, A. , Jones, J. C. , Lässer, C. , Lawson, C. , Nazarenko, I. , O'Driscoll, L. , Pink, R. , Siljander, P. R.‐M. , Soekmadji, C. , Hendrix, A. , & Nieuwland, R. (2023). MIBlood‐EV: Minimal information to enhance the quality and reproducibility of blood extracellular vesicle research. Journal of Extracellular Vesicles, 12(12), 12385. 10.1002/jev2.12385 [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Ludwig, N. , Whiteside, T. L. , & Reichert, T. E. (2019). Challenges in exosome isolation and analysis in health and disease. International Journal of Molecular Sciences, 20(19), 4684. 10.3390/ijms20194684 [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Luo, T. , Chen, S.‐Y. , Qin, Z.‐X. , Miao, Y.‐R. , Ding, Y. , Pan, S.‐Y. , Li, Y. , Lei, Q. , & Guo, A.‐Y. (2022). Transcriptomic features in a single extracellular vesicle via single‐cell RNA sequencing. Small Methods, 6, 1–10. [DOI] [PubMed] [Google Scholar]
  128. Lutomski, C. A. , Gordon, S. M. , Remaley, A. T. , & Jarrold, M. F. (2018). Resolution of lipoprotein subclasses by charge detection mass spectrometry. Analytical Chemistry, 90(11), 3653–6356. 10.1021/acs.analchem.8b01127 [DOI] [PubMed] [Google Scholar]
  129. Lynch, S. , Santos, S. G. , Campbell, E. C. , Nimmo, A. M. S. , Botting, C. , Prescott, A. , Antoniou, A. N. , & Powis, S. J. (2009). Novel MHC class I structures on exosomes. Journal of Immunology (Baltimore, Md.: 1950), 183, 1884–1891. 10.4049/jimmunol.0900798 [DOI] [PubMed] [Google Scholar]
  130. Kaparakis‐Liaskos, M. , & Ferrero, R. L. (2015). Immune modulation by bacterial outer membrane vesicles. Nature Reviews Immunology, 15, 375–387. [DOI] [PubMed] [Google Scholar]
  131. Madhavan, B. , Yue, S. , Galli, U. , Rana, S. , Gross, W. , Muller, M. , Giese, N. A. , Kalthoff, H. , Becker, T. , Buchler, M. W. , & Zöller, M. (2015). Combined evaluation of a panel of protein and MiRNA serum‐exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Indian Journal of Chemistry, 136(11), 2616–2627. [DOI] [PubMed] [Google Scholar]
  132. Magaña, S. M. , Peterson, T. E. , Evans, J. E. , Decker, P. A. , Simon, V. , Eckel‐Passow, J. E. , Daniels, D. J. , & Parney, I. F. (2022). Pediatric brain tumor cell lines exhibit MiRNA‐depleted, Y RNA‐enriched extracellular vesicles. Journal of Neuro‐Oncology, 156(2), 269–279. 10.1007/s11060-021-03914-4 [DOI] [PubMed] [Google Scholar]
  133. Mendt, M. , Kamerkar, S. , Sugimoto, H. , McAndrews, K. M. , Wu, C. C. , Gagea, M. , Yang, S. , Blanko, E. V. R. , Peng, Q. , Ma, X. , Marszalek, J. R. , Maitra, A. , Yee, C. , Rezvani, K. , Shpall, E. , LeBleu, V. S. , & Kalluri, R. (2018). Generation and testing of clinical‐grade exosomes for pancreatic cancer. JCI Insight, 3(8), 1–22. 10.1172/jci.insight.99263 [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Miller, C. E. , Xu, F. , Zhao, Y. , Luo, W. , Zhong, W. , Meyer, K. , Jayswal, R. , Weiss, H. L. , Clair, W. H. S. , Clair, D. K. S. , & Chaiswing, L. (2022). Hydrogen peroxide promotes the production of radiation‐derived EVs containing mitochondrial proteins. Antioxidants (Basel), 11(11), 2119. 10.3390/antiox11112119 [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Mohankumar, S. , & Patel, T. (2016). Extracellular vesicle long noncoding RNA as potential biomarkers of liver cancer. Briefings in Functional Genomics, 15(3), 249–256. 10.1093/bfgp/elv058 [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Morello, M. , Minciacchi, V. R. , Candia, P. d. , Yang, J. , Posadas, E. , Kim, H. , Griffiths, D. , Bhowmick, N. , Chung, L. W. K. , Gandellini, P. , Freeman, M. R. , Demichelis, F. , & Vizio, D. D. (2013). Large oncosomes mediate intercellular transfer of functional microRNA. Cell Cycle, 12(22), 3526–3536. 10.4161/cc.26539 [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Mosbach, M. L. , Pfafenrot, C. , von Strandmann, E. P. , Bindereif, A. , & Preußer, C. (2021). Molecular determinants for RNA release into extracellular vesicles. Cells, 10(10), 2674. 10.3390/cells10102674 [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Mugoni, V. , Ciani, Y. , Nardella, C. , & Demichelis, F. (2022). Circulating RNAs in prostate cancer patients. Cancer Letters, 524, 57–69. 10.1016/j.canlet.2021.10.011 [DOI] [PubMed] [Google Scholar]
  139. Muralidharan‐Chari, V. , Clancy, J. W. , Sedgwick, A. , & D'Souza‐Schorey, C. (2010). Microvesicles: Mediators of extracellular communication during cancer progression. Journal of Cell Science, 123(10), 1603–1611. 10.1242/jcs.064386 [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Murillo, O. D. , Thistlethwaite, W. , Rozowsky, J. , Subramanian, S. L. , Lucero, R. , Shah, N. , Jackson, A. R. , Srinivasan, S. , Chung, A. , Laurent, C. D. , Kitchen, R. R. , Galeev, T. , & Warrell, J. (2019). ExRNA Atlas analysis reveals distinct extracellular RNA cargo types and their carriers present across human biofluids. Cell, 177(2), 463–477. 10.1016/j.cell.2019.02.018.ExRNA [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Narita, M. , Kanda, T. , Abe, T. , & Uchiyama, T. (2015). Immune responses in patients with esophageal cancer treated with SART1 peptide‐pulsed dendritic cell vaccine. International Journal of Oncology, 46(7), 1699–1709. 10.3892/ijo.2015.2846 [DOI] [PubMed] [Google Scholar]
  142. Nicodemou, A. (2023). Emerging roles of mesenchymal stem /stromal‐cell‐derived extracellular vesicles in cancer therapy. Pharmaceutics, 15, 1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. O'Brien, K. , Breyne, K. , Ughetto, S. , Laurent, L. C. , & Breakefield, X. O. (2020). RNA delivery by extracellular vesicles in mammalian cells and its applications. Nature Reviews Molecular Cell Biology, 21(10), 585–606. 10.1038/s41580-020-0251-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Oeyen, E. , Mol, K. V. , Baggerman, G. , Willems, H. , Boonen, K. , Rolfo, C. , Pauwels, P. , Jacobs, A. , Schildermans, K. , Cho, W. C. , & Mertens, I. (2018). Ultrafiltration and size exclusion chromatography combined with asymmetrical‐flow field‐flow fractionation for the isolation and characterisation of extracellular vesicles from urine. Journal of Extracellular Vesicles, 3(7), 1490143. 10.1080/20013078.2018.1490143 [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Padilla, J. C. A. , Barutcu, S. , Malet, L. , Deschamps‐Francoeur, G. , Calderon, V. , Kwon, E. , & Lécuyer, E. (2023). Profiling the polyadenylated transcriptome of extracellular vesicles with long‐read nanopore sequencing. BMC Genomics [Electronic Resource], 24(1), 1–16. 10.1186/s12864-023-09552-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Padilla, J. C. A. , Barutcu, S. , Malet, L. , Francoeur, G. D. , Calderon, V. , Kwon, E. , & Lécuyer, E. (2023). Profiling the polyadenylated transcriptome of extracellular vesicles with long‑read nanopore sequencing. BMC Genomics [Electronic Resource], 24, 1–16. 10.1186/s12864-023-09552-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Pan, B. T. , & Johnstone, R. M. (1983). Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor. Cell, 33(3), 967–978. 10.1016/0092-8674(83)90040-5 [DOI] [PubMed] [Google Scholar]
  148. Parikh, A. R. , Leshchiner, I. , Elagina, L. , Goyal, L. , Levovitz, C. , Siravegna, G. , Livitz, D. , Rhrissorrakrai, K. , Martin, E. E. , Van Seventer, E. E. , Hanna, M. , Slowik, K. , Utro, F. , Pinto, C. J. , Wong, A. , Danysh, B. P. , de la Cruz, F. F. , Fetter, I. J. , Nadres, B. , … Corcoran, R. B. (2019). Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nature Medicine, 25(9), 1415–1421. 10.1038/s41591-019-0561-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Park, S. , Dahn, R. , Kurt, E. , Presle, A. , VanDenHeuvel, K. , Moravec, C. , Jambhekar, A. , Olukoga, O. , Shepherd, J. , Echard, A. , Blower, M. , & Skop, A. R. (2023). The mammalian midbody and midbody remnant are assembly sites for RNA and localized translation. Developmental Cell, 58(19), 1917–1932. 10.1016/j.devcel.2023.07.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Pathan, M. , Fonseka, P. , Chitti, S. V. , Kang, T. , Sanwlani, R. , Van Deun, J. , & Hendrix, A. , Mathivanan, S. (2019). Vesiclepedia 2019: A compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Research, 47(1), 516–519. 10.1093/nar/gky1029 [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Pavlova, N. N. , Zhu, J. , & Thompson, C. B. (2022). The hallmarks of cancer metabolism: Still emerging. Cell Metabolism, 34(3), 355–377. 10.1016/j.cmet.2022.01.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Pavlyukov, M. S. , Yu, H. , Bastola, S. , Minata, M. , Shender, V. O. , Lee, Y. , Zhang, S. , Wang, J. , Komarova, S. , Wang, J. , Yamaguchi, S. , Alsheikh, H. A. , Shi, J. , Chen, D. , Mohyeldin, A. , Kim, S. H. , Shin, Y. J. , Anufrieva, K. , Evtushenko, E. G. , … Nakano, I. (2018). Apoptotic cell‐derived extracellular vesicles promote malignancy of glioblastoma via intercellular transfer of splicing factors. Cancer Cell, 34(1), 119–135.e10. 10.1016/j.ccell.2018.05.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Pegtel, D. M. , & Gould, S. J. E. (2019). Exosomes. Annual Review of Biochemistry, 88, 487–514. 10.1146/annurev-biochem-013118-111902 [DOI] [PubMed] [Google Scholar]
  154. Perez‐Cruz, C. , Carron, O. , Delgado, L. , Martinez, G. , López‐Iglesias, C. , & Mercade, E. (2013). New type of outer membrane vesicle produced by the Gram‐negative bacterium Shewanella vesiclosa M7T. Applied and Environmental Microbiology, 79, 1874–1881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Perez‐Cruz, C. , Delago, L. , Lopez‐Iglesias, C. , & Mercade, E. (2015). Outer‐inner membrane vesicles naturally secreted by Gram‐negative pathogenic bacteria. PLoS ONE, 10(1), e0116896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Picca, A. , Guerra, F. , Calvani, R. , Landi, F. , Bucci, C. , & Marzetti, E. (2023). Mitochondrial‐derived vesicles: The good, the bad, and the ugly. International Journal of Molecular Sciences, 24(18), 13835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Pitt, J. M. , André, F. , Amigorena, S. , Soria, J. , & Eggermont, A. (2016). Dendritic cell‐derived exosomes for cancer therapy. Journal of Clinical Investigation, 126(4), 1224–1232. 10.1172/JCI81137.(GM-CSF) [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Poggio, M. , Hu, T. , Pai, C. , Fu, Q. , Fong, L. , Poggio, M. , Hu, T. , Pai, C. , Chu, B. , Belair, C. D. , & Chang, A. (2019). Suppression of exosomal PD‐L1 induces systemic anti‐tumor immunity and memory article suppression of exosomal PD‐L1 induces systemic anti‐tumor immunity and memory. Cell, 177(2), 414–427. 10.1016/j.cell.2019.02.016 [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Popov, L. D. (2022). Mitochondrial‐derived vesicles: Recent insights. Journal of Cellular and Molecular Medicine, 26(12), 3323–3328. 10.1111/jcmm.17391 [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Pös, O. , Biró, O. , Szemes, T. , & Nagy, B. (2018). Circulating cell‐free nucleic acids: Characteristics and applications. European Journal of Human Genetics, 26(7), 937–945. 10.1038/s41431-018-0132-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Prieto‐Vila, M. , Yoshioka, Y. , & Ochiya, T. (2021). Biological functions driven by MRNAs carried by extracellular vesicles in cancer. Frontiers in Cell and Developmental Biology, 9, 1–15. 10.3389/fcell.2021.620498 [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Quail, M. A. , Smith, M. , Coupland, P. , Otto, T. D. , Harris, S. R. , Connor, T. R. , Bertoni, A. , Swerdlow, H. P. , & Gu, Y. (2012). A tale of three next generation sequencing platforms: Comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics [Electronic Resource], 13(1), 1. 10.1186/1471-2164-13-341 [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Rai, A. , Greening, D. W. , Xu, R. , Chen, M. , Suwakulsiri, W. , & Simpson, R. J. (2021). Secreted midbody remnants are a class of extracellular vesicles molecularly distinct from exosomes and microparticles. Communications Biology, 4(1), 400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Raposo, G. , & Stoorvogel, W. (2013). Extracellular vesicles: Exosomes, microvesicles, and friends. Journal of Cell Biology, 200(4), 373–383. 10.1083/jcb.201211138 [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Ratajczak, J. , Miekuk, K. , Kucia, M. , Zhang, R. R. , Dvorak, P. , & Ratajczak, M. Z. (2006). Embryonic stem cell‐derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of MRNA and protein delivery. Leukemia, 20(5), 847–856. 10.1038/sj.leu.24041332 [DOI] [PubMed] [Google Scholar]
  166. Reátegui, E. , van der Vos, K. E. , Lai, C. P. , Zeinali, M. , Atai, N. A. , Aldikacti, B. , Floyd, F. P. , Khankhel, A. , Thapar, V. , Hochberg, F. H. , Sequist, L. V. , Nahed, B. V. , Carter, B. , Toner, M. , Balaj, L. , Ting, D. , Breakefield, X. O. , & Stott, S. L. (2018). Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor‐specific extracellular vesicles. Nature Communications, 9(1), 175. 10.1038/s41467-017-02261-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Rendi, R. , & Hultin, T. (1960). Preparation and amino acid incorporating ability of ribonucleoprotein‐particles from different tissues of the rat. Experimental Cell Research, 19(2), 253–266. 10.1016/0014-4827(60)90006-9 [DOI] [PubMed] [Google Scholar]
  168. Rezel, M. , Gidlöf, O. , Evander, M. , Bryl‐Górecka, P. , Sathanoori, R. , Gilje, P. , Pawłowski, K. , Horvatovich, P. , Erlinge, D. , Marko‐Varga, G. , & Laurell, T. (2016). Comparative proteomic analysis of extracellular vesicles isolated by acoustic trapping or differential centrifugation. Analytical Chemistry, 88, 8577–8586. 10.1021/acs.analchem.6b01694 [DOI] [PubMed] [Google Scholar]
  169. Ricci, V. , Carcione, D. , Messina, S. , Colombo, G. I. , & D'Alessandra, Y. (2020). Circulating 16s RNA in biofluids: Extracellular vesicles as mirrors of human microbiome? International Journal of Molecular Sciences, 21(23), 1–14. 10.3390/ijms21238959 [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Ripin, N. , & Parker, R. (2023). Formation, function, and pathology of RNP granules. Cell, 186(22), 4737–4756. 10.1016/j.cell.2023.09.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Royo, F. , Théry, C. , Falcón‐Pérez, J. M. , Nieuwland, R. , & Witwer, K. W. (2020). Methods for separation and characterization of extracellular vesicles: Results of a worldwide survey performed by the ISEV rigor and standardization subcommittee. Cells, 9(9), 1955. 10.3390/cells9091955 [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Rozowsky, J. , Kitchen, R. R. , Park, J. J. , Galeev, T. R. , Diao, J. , Warrell, J. , Thistlethwaite, W. , Subramanian, S. L. , Milosavljevic, A. , & Gerstein, M. (2019). ExceRpt: A comprehensive analytic platform for extracellular RNA profiling. Cell Systems, 8(4), 352–357.e3. 10.1016/j.cels.2019.03.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Russo, F. , Bella, S. D. , Vannini, F. , Berti, G. , Scoyni, F. , Cook, H. V. , Santos, A. , Nigita, G. , Bonnici, V. , Laganà, A. , Geraci, F. , Pulvirenti, A. , Giugno, R. , Masi, F. D. , Belling, K. , Jensen, L. J. , Brunak, S. , Pellegrini, M. , & Ferro, A. (2018). MiRandola 2017: A curated knowledge base of non‐invasive biomarkers. Nucleic Acids Research, 46(D1), D354–D359. 10.1093/nar/gkx854 [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Sakha, S. , Muramatsu, T. , Ueda, K. , & Inazawa, J. (2016). Exosomal MicroRNA MiR‐1246 induces cell motility and invasion through the regulation of DENND2D in oral squamous cell carcinoma. Scientific Reports, 6, 38750. 10.1038/srep38750 [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Sandau, U. S. , Magaña, S. M. , Costa, J. , Nolan, J. P. , Ikezu, T. , Vella, L. J. , Jackson, H. K. , Moreira, L. R. , Palacio, P. L. , Hill, A. F. , Quinn, J. F. , Keuren‐Jensen, K. R. V. , McFarland, T. J. , Palade, J. , Sribnick, E. A. , Su, H. , Vekrellis, K. , Coyle, B. , Yang, Y. , … Saugstad, J. A. (2024). Recommendations for reproducibility of cerebrospinal fluid extracellular vesicle studies. Journal of Extracellular Vesicles, 13(1), 12397. 10.1002/jev2.12397 [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Santos, P. , & Almeida, F. (2021). Exosome‐based vaccines: History, current state, and clinical trials. Frontiers in Immunology, 12, 1–15. 10.3389/fimmu.2021.711565 [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Schieweck, R. , Ang, F. , Fitzsche, R. , & Kieber, M. A. (2018). Isolation and characterization of endogenous RNPs from brain tissues. Methods in Molecular Biology, 1649(i), 455–471. 10.1007/978-1-4939-7213-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Schneider, W. J. , Beisiegel, U. , Goldstein, J. L. , & Brown, M. S. (1982). Purification of the low density lipoprotein receptor, an acidic glycoprotein of 164,000 molecular weight. Journal of Biological Chemistry, 257(5), 2664–2673. [PubMed] [Google Scholar]
  179. Schoger, E. , Bleckwedel, F. , Germena, G. , Rocha, C. , Tucholla, P. , Sobitov, I. , Möbius, W. , Sitte, M. , Lenz, C. , Samak, M. , Hinkel, R. , Varga, Z. V. , Giricz, Z. , Salinas, G. , Gross, J. C. , & Zelarayán, L. C. (2023). Single‐cell transcriptomics reveal extracellular vesicles secretion with a cardiomyocyte proteostasis signature during pathological remodeling. Communications Biology, 6(1), 79. 10.1038/s42003-022-04402-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Schroeder, A. , Mueller, O. , Stocker, S. , Salowsky, R. , Leiber, M. , Gassmann, M. , Lightfoot, S. , Menzel, W. , Granzow, M. , & Ragg, T. (2006). The RIN: An RNA integrity number for assigning integrity values to RNA measurements. BMC Molecular Biology, 7, 3. 10.1186/1471-2199-7-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Schultz, I. C. , Bertoni, A. P. S. , & Wink, M. R. (2021). Mesenchymal stem cell‐derived extracellular vesicles carrying MiRNA as a potential multi target therapy to COVID‐19: An in silico analysis. Stem Cell Reviews and Reports, 2, 341–356. 10.1007/s12015-021-10122-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Seo, N. , Shirakura, Y. , Tahara, Y. , Momose, F. , Harada, N. , Ikeda, H. , Akiyoshi, K. , & Shiku, H. (2018). Activated CD8 T cell extracellular vesicles prevent tumour progression by targeting of lesional mesenchymal cells. Nature Communications, 9(1), 435. 10.1038/s41467-018-02865-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Seo, Y. , Kim, H.‐S. , & Hong, I.‐S. (2019). Stem cell‐derived extracellular vesicles as immunomodulatory therapeutics. Stem Cells International, 2019, 5126156. 10.1155/2019/5126156 [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Shan, C. , Liang, Y. , Wang, K. , & Li, P. (2024). Mesenchymal stem cell‐derived extracellular vesicles in cancer therapy resistance: From biology to clinical opportunity. International Journal of Biology Sciences, 20, 347–366. 10.7150/ijbs.88500 [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Sharma, A. (2014). Bioinformatic analysis revealing association of exosomal MRNAs and proteins in epigenetic inheritance. Journal of Theoretical Biology, 357(14), 143–149. 10.1016/j.jtbi.2014.05.019 [DOI] [PubMed] [Google Scholar]
  186. Shurtleff, M. J. , Yao, J. , Qin, Y. , Nottingham, R. M. , Temoche‐Diaz, M. M. , Schekman, R. , & Lambowitz, A. M. (2017). Broad role for YBX1 in defining the small noncoding RNA composition of exosomes. PNAS, 114(43), E8987–E8995. 10.1073/pnas.1712108114 [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Simpson, R. J. , Lim, J. W. , Mortiz, R. L. , & Mathivanan, S. (2009). Exosomes: Proteomic insights and diagnostic potential. Expert Review of Proteomics, 3, 267–283. 10.1586/epr.09.17 [DOI] [PubMed] [Google Scholar]
  188. Skog, J. , Würdinger, T. , van Rijn, S. , Meijer, D. H. , Gainche, L. , Curry, W. T. , Carter, B. S. , Krichevsky, A. M. , & Breakefield, X. O. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology, 10(12), 1470–1476. 10.1038/ncb1800 [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Smith, J. T. , Wunsch, B. H. , Dogra, N. , Ahsen, M. E. , Lee, K. , Yadav, K. K. , Weil, R. , Pereira, M. A. , Patel, J. V. , Duch, E. A. , Papalia, J. M. , Lofaro, M. F. , Gupta, M. , Tewari, A. K. , Cordon‐Cardo, C. , Stolovitzky, G. , & Gifford, S. M. (2018). Integrated nanoscale deterministic lateral displacement arrays for separation of extracellular vesicles from clinically‐relevant volumes of biological samples. Lab on a Chip, 18(24), 3913–3925. 10.1039/c8lc01017j [DOI] [PubMed] [Google Scholar]
  190. Soleymani, T. , Chen, T. Y. , Gonzalez‐Kozlova, E. , & Dogra, N. (2023). The human neurosecretome: Extracellular vesicles and particles (EVPs) of the brain for intercellular communication, therapy, and liquid‐biopsy applications. Frontiers in Molecular Biosciences, 10, 1–25. 10.3389/fmolb.2023.1156821 [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Sork, H. , Corso, G. , Krjutskov, K. , Johansson, H. J. , Nordin, J. Z. , Wiklander, O. P. B. , Lee, Y. X. F. , Westholm, J. O. , Lehtiö, J. , Wood, M. J. A. , Mäger, I. , & El Andaloussi, S. (2018). Heterogeneity and interplay of the extracellular vesicle small RNA transcriptome and proteome. Scientific Reports, 8(1), 1–12. 10.1038/s41598-018-28485-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Srinivasan, S. , Yeri, A. , Cheah, P. S. , & Laurent, L. C. (2019). Small RNA sequencing across diverse biofluids identifies optimal methods for ExRNA isolation. Cell, 177(2), 446–462. 10.1016/j.cell.2019.03.024 [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Srinivasan, S. , Yeri, A. , Cheah, P. S. , Chung, A. , Danielson, K. , De Hoff, P. , Filant, J. , Laurent, C. D. , Laurent, L. D. , Magee, R. , Moeller, C. , Murthy, V. L. , Nejad, P. , Paul, A. , Rigoutsos, I. , Rodosthenous, R. , Shah, R. V. , Simonson, B. , To, C. , … Laurent, L. C. (2019). Small RNA sequencing across diverse biofluids identifies optimal methods for ExRNA isolation. Cell, 177(2), 446–462. 10.1016/j.cell.2019.03.024 [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. St Laurent, G. , Wahlestedt, C. , & Kapranov, P. (2015). The landscape of long noncoding RNA classification. Trends Genet, 31(5), 239–251. 10.1016/j.tig.2015.03.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Subramaniana, A. , Tamayoa, P. , Moothaa, V. K. , Mukherjeed, S. , Eberta, B. L. , Gillettea, M. A. , Paulovichg, A. , Pomeroyh, S. L. , Goluba, T. R. , Landera, E. S. , & Mesirova, J. P. (2005). Gene set enrichment analysis: A knowledge‐based approach for interpreting genome‐wide expression profiles. PNAS, 102(43), 15545–15550. 10.3969/j.issn.0372-2112.2018.08.016 [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Tang, F. , Barbacioru, C. , Wang, Y. , Nordman, E. , Lee, C. , Xu, N. , Wang, X. , Bodeau, J. , Tuch, B. B. , Siddiqui, A. , Lao, K. , & Surani, M. A. (2009). mRNA‐Seq whole‐transcriptome analysis of a single cell. Nature Methods, 6(5), 377–382. 10.1038/nmeth.1315 [DOI] [PubMed] [Google Scholar]
  197. Tang, Y. T. , Huang, Y. Y. , Zheng, L. , Qin, S. H. , Xu, X. P. , An, T. X. , Xu, Y. , Wu, Y. S. , Hu, X. M. , Ping, B. H. , & Wang, Q. (2017). Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. International Journal of Molecular Medicine, 40(3), 834–844. 10.3892/ijmm.2017.3080 [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Tauro, B. J. , Greening, D. W. , Mathias, R. A. , Ji, H. , Mathivanan, S. , Scott, A. M. , & Simpson, R. J. (2012). Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863‐derived exosomes. Methods, 56(2), 293–304. 10.1016/j.ymeth.2012.01.002 [DOI] [PubMed] [Google Scholar]
  199. Tesovnik, T. , Jenko Bizjan, B. , Šket, R. , Debeljak, M. , Battelino, T. , & Kovač, J. (2021). Technological approaches in the analysis of extracellular vesicle nucleotide sequences. Frontiers in Bioengineering and Biotechnology, 9, 1–22. 10.3389/fbioe.2021.787551 [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Theodoraki, M.‐N. , Yerneni, S. S. , Hoffmann, T. K. , Gooding, W. E. , & Whiteside, T. L. (2018). Clinical significance of PD‐L1+ exosomes in plasma of head and neck cancer patients. Clinical Cancer Research, 24(4), 896–905. 10.1158/1078-0432.CCR-17-2664 [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Théry, C. , Amigorena, S. , Raposo, G. , & Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology, 3(22). 10.1002/0471143030.cb0322s30 [DOI] [PubMed] [Google Scholar]
  202. Théry, C. , Witwer, K. W. , Aikawa, E. , Alcaraz, M. J. , Anderson, J. D. , Andriantsitohaina, R. , Antoniou, A. , Arab, T. , Archer, F. , Atkin‐Smith, G. K. , Ayre, D. C. , Bach, J. M. , Bachurski, D. , Baharvand, H. , Balaj, L. , Baldacchino, S. , Bauer, N. N. , Baxter, A. A. , Bebawy, M. , … Zuba‐Surma, E. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750. 10.1080/20013078.2018.1535750 [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Timagiorgis, G. , Michailidou, E. Z. , Kritis, A. , Markopoulos, A. K. , & Kouidou, S. (2011). Recovering circulating extracellular or cell‐free RNA form bodily fluids. Cancer Epidemiology, 35(6), 580–589. 10.1016/j.canep.2011.02.016 [DOI] [PubMed] [Google Scholar]
  204. Tkach, M. , Thalmensi, J. , Timperi, E. , Gueguen, P. , Nevo, N. , Grisard, E. , Sirven, P. , Cocozza, F. , Gouronnec, A. , Martin‐Jaular, L. , Jouve, M. , Delisle, F. , Manel, N. , Rookhuizen, D. C. , Guerin, C. L. , Soumslis, V. , Ramano, E. , Segura, E. , & Thery, C. (2022). Extracellular vesicles from triple negative breast cancer promote pro‐inflammatory macrophages associated with better clinical outcome. PNAS, 119(17), e2107394119. 10.1073/pnas.210739411 [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Tkach, M. , & Théry, C. (2016). Communication by extracellular vesicles: Where we are and where we need to go. Cell, 164(6), 1226–1232. 10.1016/j.cell.2016.01.043 [DOI] [PubMed] [Google Scholar]
  206. Tosar, J. P. , Cayota, A. , Eitan, E. , Halushka, M. K. , & Witwer, K. W. (2017). Ribonucleic artefacts: Are some extracellular RNA discoveries driven by cell culture medium components? Journal of Extracellular Vesicles, 6(1), 1272832. 10.1080/20013078.2016.1272832 [DOI] [PMC free article] [PubMed] [Google Scholar]
  207. Trams, E. G. , Lauter, C. J. , Salem, N. , & Heine, U. (1981). Exfoliation of membrane ecto‐enzymes in the form of micro‐vesicles. Biochimica et Biophysica Acta, 645(1), 63–70. 10.1016/0005-2736(81)90512-5 [DOI] [PubMed] [Google Scholar]
  208. Turchinovich, A. , Drapkina, O. , & Tonevitsky, A. (2019). Transcriptome of extracellular vesicles: State‐of‐the‐art. Frontiers in Immunology, 10, 202. 10.3389/fimmu.2019.00202 [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Urabe, F. , Kosaka, N. , Ito, K. , Kimura, T. , Egawa, S. , & Ochiya, T. (2020). Extracellular vesicles as biomarkers and therapeutic targets for cancer. American Journal of Physiology‐Cell Physiology, 318(1), C29–C39. 10.1152/ajpcell.00280.2019 [DOI] [PubMed] [Google Scholar]
  210. Urabe, F. , Kosaka, N. , Sawa, Y. , Yamamoto, Y. , Ito, K. , Yamamoto, T. , Kimura, T. , Egawa, S. , & Ochiya, T. (2020). MiR‐26a regulates extracellular vesicle secretion from prostate cancer cells via targeting SHC4, PFDN4, and CHORDC1. Science Advances, 6(18), 3051. 10.1126/sciadv.aay3051 [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Vader, P. , Mol, E. A. , Pasterkamp, G. , & Schiffelers, R. M. (2016). Extracellular vesicles for drug delivery. Advanced Drug Delivery Reviews, 106, 148–156. 10.1016/j.addr.2016.02.006 [DOI] [PubMed] [Google Scholar]
  212. Vagner, T. , Spinelli, C. , Minciacchi, V. R. , Balaj, L. , Zandian, M. , Conley, A. , Zijlstra, A. , Freeman, M. R. , Demichelis, F. , De, S. , Posadas, E. M. , Tanaka, H. , & Di Vizio, D. (2018). Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. Journal of Extracellular Vesicles, 7(1), 1505403. 10.1080/20013078.2018.1505403 [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Valadi, H. , Ekström, K. , Bossios, A. , Sjöstrand, M. , Lee, J. J. , & Lötvall, J. O. (2007). Exosome‐mediated transfer of MRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659. 10.1038/ncb1596 [DOI] [PubMed] [Google Scholar]
  214. Valkov, N. , Das, A. , Tucker, N. R. , Li, G. , Salvador, A. M. , Chaggin, M. D. , De Oliveira Junior, G. P. , Kur, I. , Gokulnath, P. , Ziegler, O. , Yeri, A. , Lu, S. , Khamesra, A. , Xiao, C. , Rodosthenous, R. , Srinivansan, S. , Toxavidis, V. , Tigges, J. , Laurent, L. , … Das, S. (2021). SnRNA sequencing defines signaling by RBC‐derived extracellular vesicles in the murine heart. Life Science Alliance, 4, e202101048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Valkov, N. , & Das, S. Y (2020). RNAs: Biogenesis, function, and implications for the cardiovascular system. Advances in Experimental Medicine and Biology, 1229, 327–342. 10.1007/978-981-15-1671-9_20 [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Varcianna, A. , Myszczynska, M. A. , Castelli, L. M. , O’ Neill, B. , Kim, Y. , Talbot, J. , Nyberg, S. , Nyamali, I. , Heath, P. R. , Stopford, M. J. , Hautberge, G. M. , & Ferraiuolo, L. (2019). Micro‐RNAs secreted through astrocyte‐derived extracellular vesicles cause neuronal network degeneration in C9orf72 ALS. EBioMedicine, 40, 626–635. 10.1016/j.ebiom.2018.11.067 [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Vasconcelos, M. H. , Caires, H. R. , Ābols, A. , Xavier, C. P. R. , & Linē, A. (2019). Extracellular vesicles as a novel source of biomarkers in liquid biopsies for monitoring cancer progression and drug resistance. Drug Resistance Updates, 47, 100647. 10.1016/j.drup.2019.100647 [DOI] [PubMed] [Google Scholar]
  218. Veziroglu, E. M. , & Mias, G. I. (2020). Characterizing extracellular vesicles and their diverse RNA contents. Frontiers in Genetics, 11, 1–30. 10.3389/fgene.2020.00700 [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Vietri, M. , Radulovic, M. , & Stenmark, H. (2020). The many functions of ESCRTs. Nature Reviews Molecular Cell Biology, 21(1), 25–42. 10.1038/s41580-019-0177-4 [DOI] [PubMed] [Google Scholar]
  220. von Felden, J. , Garcia‐Lezana, T. , Dogra, N. , Gonzalez‐Kozlova, E. , Ahsen, M. E. , Craig, A. , Gifford, S. , Wunsch, B. , Smith, J. T. , Kim, S. , Diaz, J. E. L. , Chen, X. , Labgaa, I. , Haber, P. , Olsen, R. , Han, D. , Restrepo, P. , D'Avola, D. , Hernandez‐Meza, G. , … Villanueva, A. (2022). Unannotated small RNA clusters associated with circulating extracellular vesicles detect early stage liver cancer. Gut, 71(10), 2069–2080. 10.1136/gutjnl-2021-325036 [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Vorperian, S. K. , Moufarrej, M. N. , & Quake, S. R. (2022). Cell types of origin of the cell‐free transcriptome. Nature Biotechnology, 40(6), 855–861. 10.1038/s41587-021-01188-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Wajnberg, G. , Allain, E. P. , Roy, J. W. , Srivastava, S. , Saucier, D. , Pier Morin, J. , Marrero, A. , O'Connell, C. , Ghosh, A. , Lewis, S. M. , Ouellette, R. J. , & Crapoulet, N. (2023). Application of annotation‐agnostic RNA sequencing data analysis tools for biomarker discovery in liquid biopsy. Frontiers in Bioinformatics, 3, 1127661. 10.3389/fbinf.2023.1127661 [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Wang, G. S. , Chen, J. Y. , Chen, W. C. , Wei, I. C. , Lin, S. W. , Liao, K. W. , Yang, T. S. , & Liu, J. F. (2022). Surfactin induces ER stress‐mediated apoptosis via IRE1‐ASK1‐JNK signaling in human osteosarcoma. Environmental Toxicology, 37(3), 574–584. 10.1002/tox.23423 [DOI] [PubMed] [Google Scholar]
  224. Wang, X. , Chai, Z. , Pan, G. , Hao, Y. , Li, B. , Ye, T. , Li, Y. , Long, F. , Xia, L. , & Liu, M. (2021). ExoBCD: A comprehensive database for exosomal biomarker discovery in breast cancer. Breifings in Bioinformatics, 22(3), bbaa088. 10.1093/bib/bbaa088 [DOI] [PubMed] [Google Scholar]
  225. Wang, Y. , Zhao, Y. , Bollas, A. , Wang, Y. , & Au, K. F. (2021). Nanopore sequencing technology, bioinformatics and applications. Nature Biotechnology, 39(11), 1348–1365. 10.1038/s41587-021-01108-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Warnecke, A. , Prenzler, N. , Harre, J. , Kohl, U. , Gartner, L. , Lenarz, T. , Laner‐Plamberger, S. , Wietzorrek, G. , Staecker, H. , Lassacher, T. , Hollerweger, J. , Gimona, M. , & Rohde, E. (2021). First‐in‐human intracochlear application of human stromal cell‐derived extracellular vesicles. Journal of Extracellular Vesicles, 10(8), 12094. 10.1002/jev2.12094 [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Wei, Z. , Batagov, A. O. , Schinelli, S. , Wang, J. , Wang, Y. , El Fatimy, R. , Rabinovsky, R. , Balaj, L. , Chen, C. C. , Hochberg, F. , Carter, B. , Breakefield, X. O. , & Krichevsky, A. M. (2017). Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nature Communications, 8(1), 1145. 10.1038/s41467-017-01196-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Welsh, J. A. , Goberdhan, D. C. I. , O'Driscoll, L. , Buzas, E. I. , Blenkiron, C. , Bussolati, B. , Cai, H. , Di Vizio, D. , Driedonks, T. A. P. , Erdbrügger, U. , Falcon‐Perez, J. M. , Fu, Q. L. , Hill, A. F. , Lenassi, M. , Lim, S. K. , Mahoney, M. G. , Mohanty, S. , Möller, A. , Nieuwland, R. , … Witwer, K. W. (2024). Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. Journal of Extracellular Vesicles, 13(2), e12404. 10.1002/jev2.12404 [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Weng, Q. , Wang, Y. , Xie, Y. , Yu, X. , Zhang, S. , Ge, J. , Li, Z. , Ye, G. , & Guo, J. (2022). Extracellular vesicles‐associated TRNA‐derived fragments (TRFs): Biogenesis, biological functions, and their role as potential biomarkers in human diseases. Journal of Molecular Medicine, 100(5), 679–695. 10.1007/s00109-022-02189-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. Weng, Z. , Zhang, B. , Wu, C. , Yu, F. , Han, B. , Li, B. , & Li, L. (2021). Therapeutic roles of mesenchymal stem cell‑derived extracellular vesicles in cancer. Journal of Hematology & Oncology, 14(136), 1–22. 10.1186/s13045-021-01141-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Witwer, K. W. , Buzás, E. I. , Bemis, L. T. , Bora, A. , Lässer, C. , Lötvall, J. , Nolte‐'t Hoen, E. N. , Piper, M. G. , Sivaraman, S. , Skog, J. , Théry, C. , Wauben, M. H. , & Hochberg, F. (2013). Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. Journal of Extracellular Vesicles, 2, 20360. 10.3402/jev.v2i0.20360 [DOI] [PMC free article] [PubMed] [Google Scholar]
  232. Xu, D. , Di, K. , Fan, B. , Wu, J. , Gu, X. , Sun, Y. , Khan, A. , Li, P. , & Li, Z. (2022). MicroRNAs in extracellular vesicles: Sorting mechanisms, diagnostic value, isolation, and detection technology. Frontiers in Bioengineering and Biotechnology, 10, 1–20. 10.3389/fbioe.2022.948959 [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Ye, Q. , Ling, S. , Zheng, S. , & Xu, X. (2019). Liquid biopsy in hepatocellular carcinoma: Circulating tumor cells and circulating tumor DNA. Molecular Cancer, 18(1), 1–13. 10.1186/s12943-019-1043-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  234. Yokoi, A. , Yoshioka, Y. , Hirakawa, A. , Yamamoto, Y. , Ishikawa, M. , Ikeda, S. I. , Kato, T. , Niimi, K. , Kajiyama, H. , Kikkawa, F. , & Ochiya, T. (2017). A combination of circulating MiRNAs for the early detection of ovarian cancer. Oncotarget, 8(52), 89811–89823. 10.18632/oncotarget.20688 [DOI] [PMC free article] [PubMed] [Google Scholar]
  235. Yu, D. , Li, Y. , Wang, M. , Gu, J. , Xu, W. , Cai, H. , Fang, X. , & Zhang, X. (2022). Exosomes as a new frontier of cancer liquid biopsy. Molecular Cancer, 21(1), 1–33. 10.1186/s12943-022-01509-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  236. Yu, L. , Zhu, G. , Zhang, Z. , Yu, Y. , Zeng, L. , Xu, Z. , Weng, J. , Xia, J. , Li, J. , & Pathak, J. L. (2023). Apoptotic bodies: Bioactive treasure left behind by the dying cells with robust diagnostic and therapeutic application potentials. Journal of Nanobiotechnology, 21(1), 1–26. 10.1186/s12951-023-01969-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Zhang, H. , Freitas, D. , Kim, H. S. , Fabijanic, K. , Li, Z. , Chen, H. , Mark, M. T. , Molina, H. , Martin, A. B. , Bojmar, L. , Fang, J. , Rampersaud, S. , Hoshino, A. , Matei, I. , Kenific, C. M. , Nakajima, M. , Mutvei, A. P. , Sansone, P. , Buehring, W. , … Lyden, D. (2018). Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field‐flow fractionation. Nature Cell Biology, 20(3), 332–343. 10.1038/s41556-018-004-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Zhang, Q. , Higginbotham, J. N. , Jeppesen, D. K. , Franklin, J. L. , Bellis, S. L. , Coffey, R. J. , Yang, Y.‐P. , Li, W. , Mckinley, E. T. , Graves‐Deal, R. , Ping, J. , Britain, C. M. , Dorsett, K. A. , Hartman, C. L. , Ford, D. A. , Allen, R. M. , Vickers, K. C. , Liu, Q. , & Coffey, R. J. (2019). Transfer of functional cargo in exomeres article transfer of functional cargo in exomeres. Cell Reports, 27(3), 1–15. 10.1016/j.celrep.2019.01.009.Transfer [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Zhang, Q. , Jeppesen, D. K. , Higginbotham, J. N. , Franklin, J. L. , & Coffey, R. J. (2023). Comprehensive isolation of extracellular vesicles and nanoparticles. Nature Protocols, 18(5), 1462–1487. 10.1038/s41596-023-00811-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Zhang, Q. , Jeppesen, D. K. , Higginbotham, J. N. , Graves‐Dea, R. , Trinh, V. Q. , Ramirez, M. A. , Sohn, Y. , Neininger, A. C. , Taneja, N. , McKinley, E. T. , Niitsu, H. , Cao, Z. , Evans, R. , Glass, S. E. , Ray, K. C. , Fissell, W. H. , Hill, S. , Rose, K. L. , Huh, W. J. , … Coffey, R. J. (2021). Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nature Cell Biology, 23, 1240–1254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Zhang, Y. , Bi, J. , Huang, J. , Tang, Y. , Du, S. , & Li, P. (2020). Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. International Journal of Nanomedicine, 15, 6917–6934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  242. Zhang, Y. , Zhang, X. O. , Chen, T. , Xiang, J. F. , Yin, Q. F. , Xing, Y. H. , Zhu, S. , Yang, L. , & Chen, L. L. (2013). Circular intronic long noncoding RNAs. Molecular Cell, 51(6), 792–806. 10.1016/j.molcel.2013.08.017 [DOI] [PubMed] [Google Scholar]
  243. Zhang, Y. , Zhen, F. , Sun, Y. , Han, B. , Wang, H. , Zhang, Y. , Zhang, H. , & Hu, J. (2023). Single‐cell RNA sequencing reveals small extracellular vesicles derived from malignant cells that contribute to angiogenesis in human breast cancers. Journal of Translational Medicine, 21(1), 1–18. 10.1186/s12967-023-04438-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  244. Ziemann, M. , Kaspi, A. , & El‐Osta, A. (2016). Evaluation of microRNA alignment techniques. RNA, 22(8), 1120–1138. 10.1261/rna.055509.115 [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Zitvogel, L. , Regnault, A. , Lozier, A. , Wolfers, J. , Flamenr, C. , Tenza, D. , Ricciardi‐Castagnoli, P. , Raposo, A. , & Amigorena, S. (1998). Eradication of established murine tumors using a novel cell‐free vaccine: Dendritic cell‐derived exosomes. Nature Medicine, 4(5), 594–600. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Extracellular Vesicles are provided here courtesy of Wiley

RESOURCES