Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Feb 1;185(2):463–471. doi: 10.1042/bj1850463

Precolicin E1, the major gene product of plasmid-ColE1 deoxyribonucleic acid in vitro.

D H Watson
PMCID: PMC1161374  PMID: 6994710

Abstract

Coupled transcription and translation of plasmid-ColE1 DNA in vitro under optimized conditions gave one major product. This has an apparent weight of 71 000, the same N-terminal sequence as colicin E1 and was not digested by deoxyribonuclease or ribonuclease. It differed from colicin E1 in its C-terminal residue and amino acid composition. It had lower specific activities in cell killing and in the fluorescence-enhancement in vitro assay of Phillips & Cramer [(1973) Biochemistry 12, 1170--1176] than did colicin E1, but both proteins bound in equimolar amounts to colicin-sensitive and colicin-resistant cells. The product of plasmid-ColE1-DNA-directed protein synthesis was converted into a protein indistinguishable in structure and activity from colicin E1 by incubation in the reaction mixture, after deoxyribonuclease and ribonuclease treatment, for a further 20 h at 37 degrees C. A protein with similar properties to the 71 000-dalton product in vitro was identified in extracts of a ColE1+ colicin-tolerant mutant of Escherichia coli K12. It is concluded that this protein probably represents a pre-form of colicin E1 which may be involved in colicin-E1 secretion or cellular colicin-E1 immunity in colicin-E-producing cells, or both of these processes.

Full text

PDF
463

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbour S. D., Nagaishi H., Templin A., Clark A. J. Biochemical and genetic studies of recombination proficiency in Escherichia coli. II. Rec+ revertants caused by indirect suppression of rec- mutations. Proc Natl Acad Sci U S A. 1970 Sep;67(1):128–135. doi: 10.1073/pnas.67.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowman C. M., Sidikaro J., Nomura M. Specific inactivation of ribosomes by colicin E3 in vitro and mechanism of immunity in colicinogenic cells. Nat New Biol. 1971 Dec 1;234(48):133–137. doi: 10.1038/newbio234133a0. [DOI] [PubMed] [Google Scholar]
  3. Clewell D. B., Helinski D. R. Supercoiled circular DNA-protein complex in Escherichia coli: purification and induced conversion to an opern circular DNA form. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1159–1166. doi: 10.1073/pnas.62.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fields K. L., Luria S. E. Effects of colicins E1 and K on cellular metabolism. J Bacteriol. 1969 Jan;97(1):64–77. doi: 10.1128/jb.97.1.64-77.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gesteland R. F., Kahn C. Synthesis of bacteriophage lambda proteins in vitro. Nat New Biol. 1972 Nov 1;240(96):3–6. doi: 10.1038/newbio240003a0. [DOI] [PubMed] [Google Scholar]
  6. Herschman H. R., Helinski D. R. Purification and characterization of colicin E2 and colicin E3. J Biol Chem. 1967 Nov 25;242(22):5360–5368. [PubMed] [Google Scholar]
  7. Holt G. R., Davis W. E., Ailor E. I., Warren A. H., Elyassi H. Massive airway hemorrhage after transtracheal aspiration. South Med J. 1978 Mar;71(3):325–327. doi: 10.1097/00007611-197803000-00031. [DOI] [PubMed] [Google Scholar]
  8. Jakes K. S., Model P. Mechanism of export of colicin E1 and colicin E3. J Bacteriol. 1979 Jun;138(3):770–778. doi: 10.1128/jb.138.3.770-778.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jakes K. S., Zinder N. D. Highly purified colicin E3 contains immunity protein. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3380–3384. doi: 10.1073/pnas.71.9.3380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jakes K., Zinder N. D., Boon T. Purification and properties of colicin E3 immunity protein. J Biol Chem. 1974 Jan 25;249(2):438–444. [PubMed] [Google Scholar]
  11. Jetten A. M., Vogels G. D. Effects of colicin A and staphylococcin 1580 on amino acid uptake into membrane vesicles of Escherichia coli and staphylococcus aureus. Biochim Biophys Acta. 1973 Jul 18;311(4):483–495. doi: 10.1016/0005-2736(73)90124-7. [DOI] [PubMed] [Google Scholar]
  12. Kaltschmidt E., Kahan L., Nomura M. In vitro synthesis of ribosomal proteins directed by Escherichia coli DNA. Proc Natl Acad Sci U S A. 1974 Feb;71(2):446–450. doi: 10.1073/pnas.71.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Konings R. N., Andreoli P. M., Veltkamp E., Nijkamp H. J. Clo DF13 plasmid deoxyribonucleic acid-directed in vitro synthesis of biologically active cloacin DF13 and clo DF13 immunity protein. J Bacteriol. 1976 May;126(2):861–868. doi: 10.1128/jb.126.2.861-868.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kool A. J., Pranger M., Nijkamp H. J. Proteins synthesized by a non-induced bacteriocinogenic factor in minicells of Escherichia coli. Mol Gen Genet. 1972;115(4):314–323. doi: 10.1007/BF00333170. [DOI] [PubMed] [Google Scholar]
  15. Lau C., Richards F. M. Proteolytic and chemical modification of colicin E3 activity. Biochemistry. 1976 Aug 24;15(17):3856–3863. doi: 10.1021/bi00662a032. [DOI] [PubMed] [Google Scholar]
  16. Levisohn R., Konisky J., Nomura M. Interaction of colicins with bacterial cells. IV. Immunity breakdown studied with colicins Ia and Ib. J Bacteriol. 1968 Sep;96(3):811–821. doi: 10.1128/jb.96.3.811-821.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lotz W. Effect of guanosine tetraphosphate on in vitro protein synthesis directed by E1 and E3 colicinogenic factors. J Bacteriol. 1978 Aug;135(2):707–712. doi: 10.1128/jb.135.2.707-712.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Meagher R. B., Tait R. C., Betlach M., Boyer H. W. Protein expression in E. coli minicells by recombinant plasmids. Cell. 1977 Mar;10(3):521–536. doi: 10.1016/0092-8674(77)90039-3. [DOI] [PubMed] [Google Scholar]
  19. Phillips S. K., Cramer W. A. Properties of the fluorescence probe response associated with the transmission mechanism of colicin E1. Biochemistry. 1973 Mar 13;12(6):1170–1176. doi: 10.1021/bi00730a024. [DOI] [PubMed] [Google Scholar]
  20. Schwartz S. A., Helinski D. R. Purification and characterization of colicin E1. J Biol Chem. 1971 Oct 25;246(20):6318–6327. [PubMed] [Google Scholar]
  21. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  22. Sidikaro J., Nomura M. E3 immunity substance. A protein from e3-colicinogenic cells that accounts for their immunity to colicin E3. J Biol Chem. 1974 Jan 25;249(2):445–453. [PubMed] [Google Scholar]
  23. Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol. 1973 Sep 15;79(2):237–248. doi: 10.1016/0022-2836(73)90003-x. [DOI] [PubMed] [Google Scholar]
  24. Tyler J., Sherratt D. J. Synthesis of E colicins in Escherichia coli. Mol Gen Genet. 1975 Oct 22;140(4):349–353. doi: 10.1007/BF00267325. [DOI] [PubMed] [Google Scholar]
  25. Warren G. J., Saul M. W., Sherratt D. J. ColE1 plasmid mobility: essential and conditional functions. Mol Gen Genet. 1979 Feb 16;170(1):103–107. doi: 10.1007/BF00268585. [DOI] [PubMed] [Google Scholar]
  26. Watson D. H., Durkacz B. W., Sherratt D. J. Homologous regions of colicins E1 and K and colicins E2 and E3 [proceedings]. Biochem Soc Trans. 1978;6(6):1257–1259. doi: 10.1042/bst0061257. [DOI] [PubMed] [Google Scholar]
  27. Watson D. H., Sherratt D. J. In vivo proteolytic cleavage of colicins requires specific receptor binding. Nature. 1979 Mar 22;278(5702):362–364. doi: 10.1038/278362a0. [DOI] [PubMed] [Google Scholar]
  28. Webster R. E., Engelhardt D. L., Zinder N. D., Konigsberg W. Amber mutants and chain termination in vitro. J Mol Biol. 1967 Oct 14;29(1):27–43. doi: 10.1016/0022-2836(67)90179-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES