Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Sep 15;182(3):661–668. doi: 10.1042/bj1820661

Phosphatidylinositol metabolism in rat hepatocytes stimulated by glycogenolytic hormones. Effects of angiotensin, vasopressin, adrenaline, ionophore A23187 and calcium-ion deprivation

M Motassim Billah 1,*, Robert H Michell 1
PMCID: PMC1161399  PMID: 229824

Abstract

1. The effects on phosphatidylinositol metabolism of three Ca2+-mobilizing glycogenolytic hormones, namely angiotensin, vasopressin and adrenaline, have been investigated by using rat hepatocytes. 2. All three hormones stimulate both phosphatidylinositol breakdown and the labelling of this lipid with 32P. 3. The response to angiotensin occurs quickly, requires a high concentration of the hormone and is prevented by [1-sarcosine, 8-isoleucine]angiotensin, a specific angiotensin antagonist that does not prevent the responses to vasopressin and to adrenaline. This response therefore seems to be mediated by angiotensin-specific receptors. 4. [1-Deaminocysteine,2-phenylalanine,7-(3,4-didehydroproline),8-arginine] vasopressin, a vasopressin analogue with enhanced antidiuretic potency, is relatively ineffective at stimulating phosphatidylinositol metabolism. This suggests that the hepatic vasopressin receptors that stimulate phosphatidylinositol breakdown are different in their ligand selectivity from the antidiuretic vasopressin receptors that activate renal adenylate cyclase. 5. Incubation of hepatocytes with ionophore A23187, a bivalent-cation ionophore, neither mimicked nor appreciably changed the effects of vasopressin on phosphatidylinositol metabolism, suggesting that phosphatidylinositol breakdown is not controlled by changes in the cytosol Ca2+ concentration. This conclusion was supported by the observation that hormonal stimulation of phosphatidylinositol breakdown and resynthesis persists in cells incubated for a substantial period in EGTA, although this treatment somewhat decreased the phosphatidylinositol response of the hepatocyte. The phosphatidylinositol response of the hepatocyte therefore appears not to be controlled by changes in cytosol [Ca2+], despite the fact that this ion is thought to be the second messenger by which the same hormones control glycogenolysis. 6. These results may be an indication that phosphatidylinositol breakdown is an integral reaction in the stimulus–response coupling sequence(s) that link(s) activation of α-adrenergic, vasopressin and angiotensin receptors to mobilization of Ca2+ in the rat hepatocyte.

Full text

PDF
661

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assimacopoulos-Jeannet F. D., Blackmore P. F., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. Studies on role of calcium in alpha-adrenergic activation of phosphorylase. J Biol Chem. 1977 Apr 25;252(8):2662–2669. [PubMed] [Google Scholar]
  2. Berridge M. J., Fain J. N. Inhibition of phosphatidylinositol synthesis and the inactivation of calcium entry after prolonged exposure of the blowfly salivary gland to 5-hydroxytryptamine. Biochem J. 1979 Jan 15;178(1):59–69. doi: 10.1042/bj1780059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bicknell R. J., Young P. W., Schofield J. G. Inhibition of the acetylcholine-induced secretion of bovine growth hormone by somatostatin. Mol Cell Endocrinol. 1979 Feb;13(2):167–180. doi: 10.1016/0303-7207(79)90017-0. [DOI] [PubMed] [Google Scholar]
  5. Billah M. M., Michell R. H. Stimulation of the breakdown and resynthesis of of phosphatidylinositol in rat hepatocytes by angiotensin, vasopressin and adrenaline. Biochem Soc Trans. 1978;6(5):1033–1035. doi: 10.1042/bst0061033. [DOI] [PubMed] [Google Scholar]
  6. Blackmore P. F., Brumley F. T., Marks J. L., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. Relationship between alpha-adrenergic stimulation of calcium efflux and activation of phosphorylase in isolated rat liver parenchymal cells. J Biol Chem. 1978 Jul 25;253(14):4851–4858. [PubMed] [Google Scholar]
  7. Chan T. M., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. J Biol Chem. 1978 Sep 25;253(18):6393–6400. [PubMed] [Google Scholar]
  8. Chen J. L., Babcock D. F., Lardy H. A. Norepinephrine, vasopressin, glucagon, and A23187 induce efflux of calcium from an exchangeable pool in isolated rat hepatocytes. Proc Natl Acad Sci U S A. 1978 May;75(5):2234–2238. doi: 10.1073/pnas.75.5.2234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Torrontegui G., Berthet J. The action of adrenalin and glucagon on the metabolism of phospholipids in rat liver. Biochim Biophys Acta. 1966 Jun 1;116(3):467–476. doi: 10.1016/0005-2760(66)90116-0. [DOI] [PubMed] [Google Scholar]
  10. Fain J. N., Berridge M. J. Relationship between 5-hydroxytryptamine activation of phosphatidylinositol hydrolysis and calcium-ion entry in Calliphora salivary glands. Biochem Soc Trans. 1978;6(5):1038–1039. doi: 10.1042/bst0061038. [DOI] [PubMed] [Google Scholar]
  11. Fain J. N., Berridge M. J. Relationship between hormonal activation of phosphatidylinositol hydrolysis, fluid secretion and calcium flux in the blowfly salivary gland. Biochem J. 1979 Jan 15;178(1):45–58. doi: 10.1042/bj1780045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Freinkel N., Dawson R. M. Role of inositol cyclic phosphate in stimulated tissues. Nature. 1973 Jun 29;243(5409):535–537. doi: 10.1038/243535a0. [DOI] [PubMed] [Google Scholar]
  13. Hems D. A., Rodrigues L. M., Whitton P. D. Rapid stimulation by vasopressin, oxytocin and angiotensin II of glycogen degradation in hepatocyte suspensions. Biochem J. 1978 May 15;172(2):311–317. doi: 10.1042/bj1720311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jones L. M., Cockcroft S., Michell R. H. Stimulation of phosphatidylinositol turnover in various tissues by cholinergic and adrenergic agonists, by histamine and by caerulein. Biochem J. 1979 Sep 15;182(3):669–676. doi: 10.1042/bj1820669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jones L. M., Michell R. H. Cholinergically stimulated phosphatidylinositol breakdown in parotid-gland fragments is independent of the ionic environment. Biochem J. 1976 Aug 15;158(2):505–507. doi: 10.1042/bj1580505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jones L. M., Michell R. H. Enhanced phosphatidylinositol breakdown as a calcium-indepepdnet response of rat parotid fragments to substance P. Biochem Soc Trans. 1978;6(5):1035–1037. doi: 10.1042/bst0061035. [DOI] [PubMed] [Google Scholar]
  17. Jones L. M., Michell R. H. Stimulus-response coupling at alpha-adrenergic receptors. Biochem Soc Trans. 1978;6(3):673–688. doi: 10.1042/bst0060673. [DOI] [PubMed] [Google Scholar]
  18. Jones L. M., Michell R. H. The relationship of calcium to receptor-controlled stimulation of phosphatidylinositol turnover. Effects of acetylcholine, adrenaline, calcium ions, cinchocaine and a bivalent cation ionophore on rat parotid-gland fragments. Biochem J. 1975 Jun;148(3):479–485. doi: 10.1042/bj1480479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Keppens S., De Wulf H. The activation of liver glycogen phosphorylase by angiotensin II. FEBS Lett. 1976 Oct 1;68(2):279–282. doi: 10.1016/0014-5793(76)80453-x. [DOI] [PubMed] [Google Scholar]
  20. Keppens S., Vandenheede J. R., De Wulf H. On the role of calcium as second messenger in liver for the hormonally induced activation of glycogen phosphorylase. Biochim Biophys Acta. 1977 Feb 28;496(2):448–457. doi: 10.1016/0304-4165(77)90327-0. [DOI] [PubMed] [Google Scholar]
  21. Kirk C. J., Rodrigues L. M., Hems D. A. The influence of vasopressin and related peptides on glycogen phosphorylase activity and phosphatidylinositol metabolism in hepatocytes. Biochem J. 1979 Feb 15;178(2):493–496. doi: 10.1042/bj1780493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kirk C. J., Verrinder T. R., Hems D. A. Rapid stimulation, by vasopressin and adrenaline, of inorganic phosphate incorporation into phosphatidyl inositol in isolated hepatocytes. FEBS Lett. 1977 Nov 15;83(2):267–271. doi: 10.1016/0014-5793(77)81020-x. [DOI] [PubMed] [Google Scholar]
  23. Kirk C. J., Verrinder T. R., Hems D. A. The influence of extracellular calcium concentration on the vasopressin-stimulated incorporation of inorganic phosphate into phosphatidylinositol in hepatocyte suspensions. Biochem Soc Trans. 1978;6(5):1031–1033. doi: 10.1042/bst0061031. [DOI] [PubMed] [Google Scholar]
  24. Lapetina E. G., Michell R. H. Phosphatidylinositol metabolism in cells receiving extracellular stimulation. FEBS Lett. 1973 Apr 1;31(1):1–10. doi: 10.1016/0014-5793(73)80061-4. [DOI] [PubMed] [Google Scholar]
  25. Lord J. A., Waterfield A. A., Hughes J., Kosterlitz H. W. Endogenous opioid peptides: multiple agonists and receptors. Nature. 1977 Jun 9;267(5611):495–499. doi: 10.1038/267495a0. [DOI] [PubMed] [Google Scholar]
  26. Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975 Mar 25;415(1):81–47. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
  27. Michell R. H., Jones L. M., Jafferji S. S. A possible role for phosphatidylinositol breakdown in muscarinic cholinergic stimulus-response coupling. Biochem Soc Trans. 1977;5(1):77–81. doi: 10.1042/bst0050077. [DOI] [PubMed] [Google Scholar]
  28. Michell R. H., Lapetina E. G. Production of cyclic inositol phosphate in stimulated tissues. Nat New Biol. 1972 Dec 27;240(104):258–260. doi: 10.1038/newbio240258a0. [DOI] [PubMed] [Google Scholar]
  29. Oron Y., Löwe M., Selinger Z. Incorporation of inorganic [32P] phosphate into rat parotid phosphatidylinositol. Induction through activation of alpha adrenergic and cholinergic receptors and relation to K+ release. Mol Pharmacol. 1975 Jan;11(1):79–86. [PubMed] [Google Scholar]
  30. Pointer R. H., Butcher F. R., Fain J. N. Studies on the role of cyclic guanosine 3':5'-monophosphate and extracellular Ca2+ in the regulation of glycogenolysis in rat liver cells. J Biol Chem. 1976 May 25;251(10):2987–2992. [PubMed] [Google Scholar]
  31. Smith C. W., Walter R. Vasopressin analog with extraordinarily high antidiuretic potency: a study of conformation and activity. Science. 1978 Jan 20;199(4326):297–299. doi: 10.1126/science.619455. [DOI] [PubMed] [Google Scholar]
  32. Stubbs M., Kirk C. J., Hems D. A. Role of extracellular calcium in the action of vasopressin on hepatic glycogenolysis. FEBS Lett. 1976 Oct 15;69(1):199–202. doi: 10.1016/0014-5793(76)80686-2. [DOI] [PubMed] [Google Scholar]
  33. Vandenheede J. R., Keppens S., De Wulf H. Inactivation and reactivation of liver phosphorylase b kinase. Biochim Biophys Acta. 1977 Apr 12;481(2):463–470. doi: 10.1016/0005-2744(77)90279-0. [DOI] [PubMed] [Google Scholar]
  34. van de Werve G., Hue L., Hers H. G. Hormonal and ionic control of the glycogenolytic cascade in rat liver. Biochem J. 1977 Jan 15;162(1):135–142. doi: 10.1042/bj1620135. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES