Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Sep 15;182(3):669–676. doi: 10.1042/bj1820669

Stimulation of phosphatidylinositol turnover in various tissues by cholinergic and adrenergic agonists, by histamine and by caerulein

Lynne M Jones 1, Shamshad Cockcroft 1,*,, Robert H Michell 1
PMCID: PMC1161400  PMID: 42389

Abstract

Studies are reported of the biochemical and pharmacological characteristics of the stimulation of phosphatidylinositol metabolism that is produced in appropriate target tissues by stimulation of various receptors that use Ca2+ as their second messenger. (1) Muscarinic cholinergic and α-adrenergic phosphatidylinositol responses were observed in rat lacrimal gland, and a response to caerulein was detected in the longitudinal smooth muscle of guinea-pig ileum. (2) The muscarinic cholinergic phosphatidylinositol response of rat lacrimal gland, like that of several other tissues, is not dependent on the availability of extracellular Ca2+. (3) Three phosphatidylinositol responses, namely to histamine in guinea-pig ileum smooth muscle, to α-adrenergic stimulation in rat vas deferens and to muscarinic cholinergic stimulation in rat lacrimal gland, were all found to involve phosphatidylinositol breakdown. (4) The stereospecificity of the muscarinic receptor responsible for the phosphatidylinositol response of guinea-pig pancreas was tested by using the two stereoisomeric forms of acetyl-β-methylcholine; the S-isomer was very much more active than the R-isomer in provoking both phosphatidylinositol breakdown and its labelling with 32P, as it is in provoking other physiological responses such as contractility or secretion. (5) Pilocarpine, a muscarinic partial agonist, provoked a significantly smaller phosphatidylinositol breakdown in rat parotid fragments than did carbamoylcholine, a potent muscarinic agonist. (6) All of these results are consistent with, but do not prove, a previously offered hypothesis that suggests that phosphatidylinositol breakdown is a reaction essential to stimulus–response coupling at a variety of cell-surface receptors that mobilize Ca2+ from and through the plasma membranes of target tissues.

Full text

PDF
669

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauduin H., Cantraine F. "Phospholipid effect" and secretion in the rat pancreas. Biochim Biophys Acta. 1972 Jun 19;270(2):248–253. [PubMed] [Google Scholar]
  2. Bauduin H., Rochus L., Vincent D., Dumont J. E. Role of cyclic 3',5'-amp in the action of physiological secretagogues on the metabolism of rat pancreas in vitro. Biochim Biophys Acta. 1971 Oct;252(1):171–183. doi: 10.1016/0304-4165(71)90106-1. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J., Fain J. N. Inhibition of phosphatidylinositol synthesis and the inactivation of calcium entry after prolonged exposure of the blowfly salivary gland to 5-hydroxytryptamine. Biochem J. 1979 Jan 15;178(1):59–69. doi: 10.1042/bj1780059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bicknell R. J., Young P. W., Schofield J. G. Inhibition of the acetylcholine-induced secretion of bovine growth hormone by somatostatin. Mol Cell Endocrinol. 1979 Feb;13(2):167–180. doi: 10.1016/0303-7207(79)90017-0. [DOI] [PubMed] [Google Scholar]
  5. Billah M. M., Michell R. H. Phosphatidylinositol metabolism in rat hepatocytes stimulated by glycogenolytic hormones. Effects of angiotensin, vasopressin, adrenaline, ionophore A23187 and calcium-ion deprivation. Biochem J. 1979 Sep 15;182(3):661–668. doi: 10.1042/bj1820661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Billah M. M., Michell R. H. Stimulation of the breakdown and resynthesis of of phosphatidylinositol in rat hepatocytes by angiotensin, vasopressin and adrenaline. Biochem Soc Trans. 1978;6(5):1033–1035. doi: 10.1042/bst0061033. [DOI] [PubMed] [Google Scholar]
  7. Birdsall N. J., Hulme E. C. Biochemical studies on muscarinic acetylcholine receptors. J Neurochem. 1976 Jul;27(1):7–16. doi: 10.1111/j.1471-4159.1976.tb01536.x. [DOI] [PubMed] [Google Scholar]
  8. Canessa de Scarnati O., Lapetina E. G. Adrenergic stimulation of phosphatidylinositol labelling in rat vas deferens. Biochim Biophys Acta. 1974 Sep 19;360(3):298–305. doi: 10.1016/0005-2760(74)90059-9. [DOI] [PubMed] [Google Scholar]
  9. Chambaut-Guérin A. M., Muller P., Rossignol B. Microtubules and protein secretion in rat lacrimal glands. Relationship between colchicine binding and its inhibitory effect on the intracellular transport of proteins. J Biol Chem. 1978 Jun 10;253(11):3870–3876. [PubMed] [Google Scholar]
  10. Chang K. J., Triggle D. J. Stereoselectivity of cholinergic activity in a series of 1,3-dioxolanes. J Med Chem. 1973 Jun;16(6):718–720. doi: 10.1021/jm00264a037. [DOI] [PubMed] [Google Scholar]
  11. Clements R. S., Jr, Rhoten W. B. Phosphoinositide metabolism and insulin secretion from isolated rat pancreatic islets. J Clin Invest. 1976 Mar;57(3):684–691. doi: 10.1172/JCI108325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cockcroft S., Gomperts B. D. Evidence for a role of phosphatidylinositol turnover in stimulus-secretion coupling. Studies with rat peritoneal mast cells. Biochem J. 1979 Mar 15;178(3):681–687. doi: 10.1042/bj1780681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Diringer H., Friis R. R. Changes in phosphatidylinositol metabolism correlated to growth state of normal and Rous sarcoma virus-transformed Japanese quail cells. Cancer Res. 1977 Sep;37(9):2979–2984. [PubMed] [Google Scholar]
  14. Diringer H., Koch M. A. Differences in the metabolism of phospholipids depending on cell population density. Biochem Biophys Res Commun. 1973 Apr 16;51(4):967–971. doi: 10.1016/0006-291x(73)90021-1. [DOI] [PubMed] [Google Scholar]
  15. Erspamer V., Bertaccini G., De Caro G., Endean R., Impicciatore M. Pharmacological actions of caerulein. Experientia. 1967 Sep 15;23(9):702–703. doi: 10.1007/BF02154121. [DOI] [PubMed] [Google Scholar]
  16. Fain J. N., Berridge M. J. Relationship between 5-hydroxytryptamine activation of phosphatidylinositol hydrolysis and calcium-ion entry in Calliphora salivary glands. Biochem Soc Trans. 1978;6(5):1038–1039. doi: 10.1042/bst0061038. [DOI] [PubMed] [Google Scholar]
  17. Fain J. N., Berridge M. J. Relationship between hormonal activation of phosphatidylinositol hydrolysis, fluid secretion and calcium flux in the blowfly salivary gland. Biochem J. 1979 Jan 15;178(1):45–58. doi: 10.1042/bj1780045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Freinkel N., El Younsi C., Dawson M. C. Inter-relations between the phospholipids of rat pancreatic islets during glucose stimulation, and their response to medium inositol and tetracaine. Eur J Biochem. 1975 Nov 1;59(1):245–252. doi: 10.1111/j.1432-1033.1975.tb02448.x. [DOI] [PubMed] [Google Scholar]
  19. Gerber D., Davies M., Hokin L. E. The effects of secretagogues on the incorporation of (2- 3 H)myoinositol into lipid in cytological fractions in the pancreas of the guinea pig in vivo. J Cell Biol. 1973 Mar;56(3):736–745. doi: 10.1083/jcb.56.3.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Herzog V., Sies H., Miller F. Exocytosis in secretory cells of rat lacrimal gland. Peroxidase release from lobules and isolated cells upon cholinergic stimulation. J Cell Biol. 1976 Sep;70(3):692–706. doi: 10.1083/jcb.70.3.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hokin L. E. Dynamic aspects of phospholipids during protein secretion. Int Rev Cytol. 1968;23:187–208. doi: 10.1016/s0074-7696(08)60272-7. [DOI] [PubMed] [Google Scholar]
  22. Iwatsuki N., Petersen O. H. Membrane potential, resistance, and intercellular communication in the lacrimal gland: effects of acetylcholine and adrenaline. J Physiol. 1978 Feb;275:507–520. doi: 10.1113/jphysiol.1978.sp012204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jafferji S. S., Michell R. H. Investigation of the relationship between cell-surface calcium-ion gating and phosphatidylinositol turnover by comparison of the effects of elevated extracellular potassium ion concentration on ileium smooth muscle and pancreas. Biochem J. 1976 Nov 15;160(2):397–399. doi: 10.1042/bj1600397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jafferji S. S., Michell R. H. Muscarinic cholinergic stimulation of phosphatidylinositol turnover in the longitudinal smooth muscle of guinea-pig ileum. Biochem J. 1976 Mar 15;154(3):653–657. doi: 10.1042/bj1540653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jafferji S. S., Michell R. H. Stimulation of phosphatidylinositol turnover by histamine, 5-hydroxytryptamine and adrenaline in the longitudinal smooth muscle of guinea pig ileum. Biochem Pharmacol. 1976 Jun 15;25(12):1429–1430. doi: 10.1016/0006-2952(76)90115-5. [DOI] [PubMed] [Google Scholar]
  26. Jafferji S. S., Michell R. H. The relationship between calcium ion gates and the stimulation of phosphatidylinositol turnover. Biochem Soc Trans. 1977;5(1):104–106. doi: 10.1042/bst0050104. [DOI] [PubMed] [Google Scholar]
  27. Jones L. M., Michell R. H. Breakdown of phosphatidylinositol provoked by muscarinic cholinergic stimulation of rat parotid-gland fragments. Biochem J. 1974 Sep;142(3):583–590. doi: 10.1042/bj1420583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jones L. M., Michell R. H. Cholinergically stimulated phosphatidylinositol breakdown in parotid-gland fragments is independent of the ionic environment. Biochem J. 1976 Aug 15;158(2):505–507. doi: 10.1042/bj1580505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Jones L. M., Michell R. H. Enhanced phosphatidylinositol breakdown as a calcium-indepepdnet response of rat parotid fragments to substance P. Biochem Soc Trans. 1978;6(5):1035–1037. doi: 10.1042/bst0061035. [DOI] [PubMed] [Google Scholar]
  30. Jones L. M., Michell R. H. Stimulus-response coupling at alpha-adrenergic receptors. Biochem Soc Trans. 1978;6(3):673–688. doi: 10.1042/bst0060673. [DOI] [PubMed] [Google Scholar]
  31. Jones L. M., Michell R. H. The relationship of calcium to receptor-controlled stimulation of phosphatidylinositol turnover. Effects of acetylcholine, adrenaline, calcium ions, cinchocaine and a bivalent cation ionophore on rat parotid-gland fragments. Biochem J. 1975 Jun;148(3):479–485. doi: 10.1042/bj1480479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Keryer G., Rossignol B. Effect of carbachol on 45Ca uptake and protein secretion in rat lacrimal gland. Am J Physiol. 1976 Jan;230(1):99–104. doi: 10.1152/ajplegacy.1976.230.1.99. [DOI] [PubMed] [Google Scholar]
  33. Kirk C. J., Rodrigues L. M., Hems D. A. The influence of vasopressin and related peptides on glycogen phosphorylase activity and phosphatidylinositol metabolism in hepatocytes. Biochem J. 1979 Feb 15;178(2):493–496. doi: 10.1042/bj1780493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kirk C. J., Verrinder T. R., Hems D. A. Rapid stimulation, by vasopressin and adrenaline, of inorganic phosphate incorporation into phosphatidyl inositol in isolated hepatocytes. FEBS Lett. 1977 Nov 15;83(2):267–271. doi: 10.1016/0014-5793(77)81020-x. [DOI] [PubMed] [Google Scholar]
  35. Kirk C. J., Verrinder T. R., Hems D. A. The influence of extracellular calcium concentration on the vasopressin-stimulated incorporation of inorganic phosphate into phosphatidylinositol in hepatocyte suspensions. Biochem Soc Trans. 1978;6(5):1031–1033. doi: 10.1042/bst0061031. [DOI] [PubMed] [Google Scholar]
  36. Koch M. A., Diringer H. A difference in the breakdown of phosphatidylinositol in normal and SV40 transformed mouse fibroblasts. Biochem Biophys Res Commun. 1973 Nov 16;55(2):305–311. doi: 10.1016/0006-291x(73)91088-7. [DOI] [PubMed] [Google Scholar]
  37. Lapetina E. G., Brown W. E., Michell R. H. Muscarinic cholinergic stimulation of phosphatidylinositol turnover in isolated rat superior cervical sympathetic ganglia. J Neurochem. 1976 Mar;26(3):649–651. doi: 10.1111/j.1471-4159.1976.tb01530.x. [DOI] [PubMed] [Google Scholar]
  38. Lo H., Lehotay D. C., Katz D., Levey G. S. Parathyroid hormone-mediated incorporation of 32P-orthophosphate into phosphatidic acid and phosphatidylinositol in renal cortical slices. Endocr Res Commun. 1976;3(6):377–385. doi: 10.3109/07435807609073911. [DOI] [PubMed] [Google Scholar]
  39. Lunt G. G., Pickard M. R. The subcellular localization of carbamylcholine-stimulated phosphatidyl inositol turnover in rat cerebral cortex in vivo. J Neurochem. 1975 Jun;24(6):1203–1208. doi: 10.1111/j.1471-4159.1975.tb03899.x. [DOI] [PubMed] [Google Scholar]
  40. Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975 Mar 25;415(1):81–47. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
  41. Michell R. H., Jafferji S. S., Jones L. M. Receptor occupancy dose--response curve suggests that phosphatidyl-inositol breakdown may be intrinsic to the mechanism of the muscarinic cholinergic receptor. FEBS Lett. 1976 Oct 15;69(1):1–5. doi: 10.1016/0014-5793(76)80640-0. [DOI] [PubMed] [Google Scholar]
  42. Michell R. H., Jones L. M. Enhanced phosphatidylinositol labelling in rat parotid fragments exposed to alpha-adrenergic stimulation. Biochem J. 1974 Jan;138(1):47–52. doi: 10.1042/bj1380047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Michell R. H., Jones L. M., Jafferji S. S. A possible role for phosphatidylinositol breakdown in muscarinic cholinergic stimulus-response coupling. Biochem Soc Trans. 1977;5(1):77–81. doi: 10.1042/bst0050077. [DOI] [PubMed] [Google Scholar]
  44. Miller J. C. A study of the kinetics of the muscarinic effect on phosphatidylinositol and phosphatidic acid metabolism in rat brain synaptosomes. Biochem J. 1977 Dec 15;168(3):549–555. doi: 10.1042/bj1680549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Pickard M. R., Hawthorne J. N., Hayashi E., Yamada S. Effects of surugatoxin and other nicotinic and muscarinic antagonists on phosphatidylinositol metabolism in active sympathetic ganglia. Biochem Pharmacol. 1977 Mar 1;26(5):448–450. doi: 10.1016/0006-2952(77)90208-8. [DOI] [PubMed] [Google Scholar]
  46. Pickard M. R., Hawthorne J. N. The labelling of nerve ending phospholipids in guinea-pig brain in vivo and the effect of electrical stimulation on phosphatidylinositol metabolism in prelabelled synaptosomes. J Neurochem. 1978 Jan;30(1):145–155. doi: 10.1111/j.1471-4159.1978.tb07045.x. [DOI] [PubMed] [Google Scholar]
  47. Putney J. W., Jr, Parod R. J., Marier S. H. Control by calcium of protein discharge and membrane permeability to potassium in the rat lacrimal gland. Life Sci. 1977 Jun 1;20(11):1905–1911. doi: 10.1016/0024-3205(77)90227-2. [DOI] [PubMed] [Google Scholar]
  48. Ristow H. J., Frank W., Fröhlich M. Stimulierung von Kulturen embryonaler Rattenzellen durch Kälberserum. V. Verhalten der Inosit- und Cholinphospholipide. Z Naturforsch C. 1973 Mar-Apr;28(3):188–194. [PubMed] [Google Scholar]
  49. Schneider C., Mottola C., Romeo D. Calcium ion-dependent adenosine triphosphatase activity and plasma-membrane phosphorylation in the human neutrophil. Biochem J. 1979 Sep 15;182(3):655–660. doi: 10.1042/bj1820655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ward D., Young J. M. Ligand binding to muscarinic receptors in intact longitudinal muscle strips from guinea-pig intestine. Br J Pharmacol. 1977 Oct;61(2):189–197. doi: 10.1111/j.1476-5381.1977.tb08404.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Young P. W., Bicknell R. J., Schofield J. G. Acetylcholine stimulates growth hormone secretion, phosphatidyl inositol labelling, 45Ca2+ efflux and cyclic GMP accumulation in bovine anterior pituitary glands. J Endocrinol. 1979 Feb;80(2):203–213. doi: 10.1677/joe.0.0800203. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES