Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Oct 1;183(1):127–132. doi: 10.1042/bj1830127

The exchange of histidine C-2 protons in superoxide dismutases. A novel method for assigning histidine-metal ligands in proteins.

A E Cass, H A Hill, J V Bannister, W H Bannister, V Hasemann, J T Johansen
PMCID: PMC1161480  PMID: 393248

Abstract

The rates of exchange of the C-2 protons of histidine residues in copper-zinc superoxide dismutase are substantially decreased by metal ion binding. This observation was used to distinguish between ligand and non ligand histidine residues in bovine and yeast copper-zinc superoxide dismutases; the effect was shown to depend only on metal ion co-ordination and not as a consequence of concomitant changes in protein structure. Selective deuteration of the zinc-only proteins at pH (uncorrected pH-meter reading) 8.2 and 50 degrees C resulted in the distinction between copper and zinc ligand resonances in the 1H n.m.r. spectrum of the enzymes. This method is proposed as a generally applicable technique for identifying histidine residues as ligands in metalloproteins.

Full text

PDF
127

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin G. S., Galdes A., Hill H. A., Smith B. E., Waley S. G., Abraham E. P. Histidine residues of zinc ligands in beta-lactamase II. Biochem J. 1978 Nov 1;175(2):441–447. doi: 10.1042/bj1750441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldwin G. S., Waley S. G., Abraham E. P. Identification of histidine residues that act as zinc ligands in beta-lactamase II by differential tritium exchange. Biochem J. 1979 Jun 1;179(3):459–463. doi: 10.1042/bj1790459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bannister J., Bannister W., Wood E. Bovine erythrocyte cupro-zinc protein. 1. Isolation and general characterization. Eur J Biochem. 1971 Jan;18(2):178–186. doi: 10.1111/j.1432-1033.1971.tb01228.x. [DOI] [PubMed] [Google Scholar]
  4. Campbell I. D., Dobson C. M., Williams J. P. Studies of exchangeable hydrogens in lysozyme by means of Fourier transform proton magnetic resonance. Proc R Soc Lond B Biol Sci. 1975 Jun 17;189(1097):485–502. doi: 10.1098/rspb.1975.0069. [DOI] [PubMed] [Google Scholar]
  5. Cass A. E., Galdes A., Hill H. A., McClelland C. E., Storm C. B. Heavy metal binding to biological molecules: Identification of ligands by observation of 199Hg--1H coupling. FEBS Lett. 1978 Oct 15;94(2):311–314. doi: 10.1016/0014-5793(78)80964-8. [DOI] [PubMed] [Google Scholar]
  6. Cass A. E., Hill A. O., Smith B. E., Bannister J. V., Bannister W. H. Investigation of the structure of bovine erythrocyte superoxide dismutase by 1H nuclear magnetic resonance spectroscopy. Biochemistry. 1977 Jul 12;16(14):3061–3066. doi: 10.1021/bi00633a003. [DOI] [PubMed] [Google Scholar]
  7. Cass A. E., Hill A. O., Smith B. E. Carbon-2 proton exchange at histidine-41 in bovine erythrocyte superoxide dismutase. Biochem J. 1977 Sep 1;165(3):587–589. doi: 10.1042/bj1650587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cass A. E., Hill H. A., Bannister J. V., Bannister W. H. Zinc(II) binding to apo-(bovine erythrocyte superoxide dismutase). Biochem J. 1979 Feb 1;177(2):477–486. doi: 10.1042/bj1770477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fee J. A., Phillips W. D. The behavior of holo- and apo-forms of bovine superoxide dismutase at low pH. Biochim Biophys Acta. 1975 Nov 18;412(1):26–38. doi: 10.1016/0005-2795(75)90336-0. [DOI] [PubMed] [Google Scholar]
  10. Fee J. A. Studies on the reconstitution of bovine erythrocyte superoxide dismutase. IV. Preparation and some properties of the enzyme in which Co(II) is substituted for Zn(II). J Biol Chem. 1973 Jun 25;248(12):4229–4234. [PubMed] [Google Scholar]
  11. Fee J. A., Ward R. L. Evidence for a coordination position available to solute molecules on one of the metals at the active center of reduced bovine superoxide di smutase. Biochem Biophys Res Commun. 1976 Jul 26;71(2):427–437. doi: 10.1016/0006-291x(76)90805-6. [DOI] [PubMed] [Google Scholar]
  12. Krieger M., Koeppe R. E., 2nd, Stroud R. M. pH dependence of tritium exchange with the C-2 protons of the histidines in bovine trypsin. Biochemistry. 1976 Aug 10;15(16):3458–3464. doi: 10.1021/bi00661a010. [DOI] [PubMed] [Google Scholar]
  13. Lippard S. J., Burger A. R., Ugurbil K., Pantoliano M. W., Valentine J. S. Nuclear magnetic resonance and chemical modification studies of bovine erythrocyte superoxide dismutase: evidence for zinc-promoted organization of the active site structure. Biochemistry. 1977 Mar 22;16(6):1136–1141. doi: 10.1021/bi00625a017. [DOI] [PubMed] [Google Scholar]
  14. Steinman H. M., Naik V. R., Abernethy J. L., Hill R. L. Bovine erythrocyte superoxide dismutase. Complete amino acid sequence. J Biol Chem. 1974 Nov 25;249(22):7326–7338. [PubMed] [Google Scholar]
  15. Weser U., Hartmann H. J. Preparation of pure bovine apo-erythrocuprein by gel filtration. FEBS Lett. 1971 Sep 15;17(1):78–80. doi: 10.1016/0014-5793(71)80567-7. [DOI] [PubMed] [Google Scholar]
  16. Zisapel N. Structural changes in metalloenzyme in the course of metal substitution: carboxypeptidase B. Biochem Biophys Res Commun. 1978 Mar 15;81(1):28–34. doi: 10.1016/0006-291x(78)91626-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES