Abstract
1. Sporulation of Clostridium pasteurianum effects several changes in its proton-translocating cell-membrane H+-ATPase. Notable among these are the acquisition of susceptibility to activation by trypsin and a changed protein subunit composition. 2. A protein was isolated from the mother-cell membrane that inhibited the ATP phosphohydrolase activity of purified vegetative-cell-membrane H+-ATPase [BF0F1 complex, which consists of soluble ATPase (BF1) and the proton-channel component (BF0)] and rendered it susceptible to trypsin activation. 3. This trypsin-sensitive inhibitor protein had a molecular weight of 10000 and on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis was indistinguishable from the novel protein subunit e of the mother-cell-membrane ATPase 4. In bacteriorhodopsin-containing everted membrane vesicles, the specific ATP synthetase activity of the mother-cell-membrane ATPase was significantly greater than that of the vegetative-cell-membrane ATPase. 5. Treatment with trypsin-sensitive inhibitor protein of artificial proteoliposomes containing bacteriorhodopsin and vegetative-cell-membrane H+-ATPase (BF0F1) significantly increased the specific ATP synthetase activity of this enzyme. 6. The ATP synthetase activity of crude cell-membrane preparations from cultures of Clostridium pasteurianum increased during that period in the course of sporulation when the membrane ATP phosphohydrolase was both most rapidly decreasing in specific activity and acquiring its susceptibility to activation by trypsin.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Booth I. R., Morris J. G. Proton-motive force in the obligately anaerobic bacterium Clostridium pasteurianum: a role in galactose and gluconate uptake. FEBS Lett. 1975 Nov 15;59(2):153–157. doi: 10.1016/0014-5793(75)80364-4. [DOI] [PubMed] [Google Scholar]
- Clarke D. J., Fuller F. M., Morris J. G. The proton-translocating adenosine triphosphatase of the obligately anaerobic bacterium Clostridium pasteurianum. 1. ATP phosphohydrolase activity. Eur J Biochem. 1979 Aug 1;98(2):597–612. doi: 10.1111/j.1432-1033.1979.tb13222.x. [DOI] [PubMed] [Google Scholar]
- Clarke D. J., Morris J. G. Partial purification of a dicyclohexylcarbodi-imide-sensitive membrane adenosine triphosphatase complex from the obligately anaerobic bacterium Clostridium Pasteurianum. Biochem J. 1976 Mar 15;154(3):725–729. doi: 10.1042/bj1540725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke D. J., Morris J. G. Reconstitution of a functional proton-translocating adenosine triphosphatase from the obligately anaerobic bacterium Clostridium pasteurianum. Biochem Soc Trans. 1977;5(1):140–143. doi: 10.1042/bst0050140. [DOI] [PubMed] [Google Scholar]
- Clarke D. J., Morris J. G. The proton-translocating adenosine triphosphatase of the obligately anaerobic bacterium Clostridium pasteurianum. 2. ATP synthetase activity. Eur J Biochem. 1979 Aug 1;98(2):613–620. doi: 10.1111/j.1432-1033.1979.tb13223.x. [DOI] [PubMed] [Google Scholar]
- Clarke D. J., Robson R. M., Morris J. G. Purification of two Clostridium bacteriocins by procedures appropriate to hydrophobic proteins. Antimicrob Agents Chemother. 1975 Mar;7(3):256–264. doi: 10.1128/aac.7.3.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lloyd D., Edwards S. W. Mitochondrial adenosine triphosphatase of the fission yeast, Schizosaccharomyces pombe 972h-. Changes in activity and inhibitor-sensitivity in response to catabolite repression. Biochem J. 1976 Nov 15;160(2):335–342. doi: 10.1042/bj1600335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munoz E., Freer J. H., Ellar D. J., Salton M. R. Membrane-associated ATPase activity from Micrococcus lysodeikticus. Biochim Biophys Acta. 1968 Apr 29;150(3):531–533. doi: 10.1016/0005-2736(68)90156-9. [DOI] [PubMed] [Google Scholar]
- Nelson N. Structure and function of chloroplast ATPase. Biochim Biophys Acta. 1976 Nov 30;456(3-4):314–338. doi: 10.1016/0304-4173(76)90003-3. [DOI] [PubMed] [Google Scholar]
- Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
- Riebeling V., Thauer R. K., Jungermann K. The internal-alkaline pH gradient, sensitive to uncoupler and ATPase inhibitor, in growing Clostridium pasteurianum. Eur J Biochem. 1975 Jul 1;55(2):445–453. doi: 10.1111/j.1432-1033.1975.tb02181.x. [DOI] [PubMed] [Google Scholar]
- Robson R. L., Robson R. M., Morris J. G. The biosynthesis of granulose by Clostridium pasteurianum. Biochem J. 1974 Dec;144(3):503–511. doi: 10.1042/bj1440503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida M., Sone N., Hirata H., Kagawa Y. ATP synthesis catalyzed by purified DCCD-sensitive ATPase incorporated into reconstituted purple membrane vesicles. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1295–1300. doi: 10.1016/0006-291x(75)90167-9. [DOI] [PubMed] [Google Scholar]