Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Jan 15;186(1):331–341. doi: 10.1042/bj1860331

Metabolic adaptation in phosphorylase kinase deficiency. Changes in metabolite concentrations during tetanic stimulation of mouse leg muscles.

Z H Rahim, D Perrett, G Lutaya, J R Griffiths
PMCID: PMC1161535  PMID: 6768356

Abstract

1. Glycogen, nucleotides and glycolytic intermediates and products were measured before and during tetanus in the hamstrings-muscle groups of normal (C3H) and phosphorylase kinase-deficient (ICR/IAn) mice. 2. Phosphorylase kinase-deficient muscles contained 3-4-fold more glycogen and sustained a larger (approx. 2-fold), more rapid (11 +/- 2 ng/s faster) and more prolonged glycogenolysis during 120s tetanus despite their lack of phosphorylase a. 3. No significant change in total adenine nucleotide contents occurred during tetanus in either strain, but there was a 60-100-fold rise in IMP concentration to approx. 2mM in both strains. The initial rate of IMP formation was 6-fold more rapid (112 nmol/s per g) in phosphorylase kinase-deficient muscle. 4. Adenylosuccinate content rose to 36 nmol/g in phosphorylase kinase-deficient muscle and to 9 nmol/g in normal muscle at 45s tetanus, but then fell. 5. In phosphorylase kinase-deficient muscle, glucose 6-phosphate, a powerful phosphorylase inhibitor, was 56% of that in normal muscle. 6. The mass-action ratio of the phosphoglucomutase-catalysed reaction [glucose 6-phosphate]/[glucose 1-phosphate] was markedly lower than Keq. (approx. 17) in relaxed muscle of both strains (approx. 5-7), but rose significantly during tetanus to the value for Keq. 7. The data for IMP satisfy the criteria put forward by Rahim, Perrett & Griffiths [(1976) FEBS Lett. 69, 203-206] for a nucleotide activator of phosphorylase b: it should be present at a higher concentration in phosphorylase kinase-deficient muscle, its concentration should rise during muscle work, and it should attain a concentration comparable with its activation constant for phosphorylase b.

Full text

PDF
331

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beis I., Newsholme E. A. The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. Biochem J. 1975 Oct;152(1):23–32. doi: 10.1042/bj1520023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Busby S. J., Radda G. K. Regulation of the glycogen phosphorylase system--from physical measurements to biological speculations. Curr Top Cell Regul. 1976;10:89–160. doi: 10.1016/b978-0-12-152810-2.50010-3. [DOI] [PubMed] [Google Scholar]
  3. CARTER C. E., COHEN L. H. The preparation and properties of adenylosuccinase and adenylosuccinic acid. J Biol Chem. 1956 Sep;222(1):17–30. [PubMed] [Google Scholar]
  4. Cohen P. T., Burchell A., Cohen P. The molecular basis of skeletal muscle phosphorylase kinase deficiency. Eur J Biochem. 1976 Jul 1;66(2):347–356. doi: 10.1111/j.1432-1033.1976.tb10524.x. [DOI] [PubMed] [Google Scholar]
  5. Cohen P. T., Cohen P. Skeletal muscle phosphorylase kinase deficiency: detection of a protein lacking any activity in ICR-IAn mice. FEBS Lett. 1973 Jan 15;29(2):113–116. doi: 10.1016/0014-5793(73)80538-1. [DOI] [PubMed] [Google Scholar]
  6. Conlee R. K., Hickson R. C., Winder W. W., Hagberg J. M., Holloszy J. O. Regulation of glycogen resynthesis in muscles of rats following exercise. Am J Physiol. 1978 Sep;235(3):R145–R150. doi: 10.1152/ajpregu.1978.235.3.R145. [DOI] [PubMed] [Google Scholar]
  7. DANFORTH W. H., HELMREICH E., CORICF The effect of contraction and of epinephrine on the phosphorylase activity of frog sartorius muscle. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1191–1199. doi: 10.1073/pnas.48.7.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DANFORTH W. H., HELMREICH E. REGULATION OF GLYCOLYSIS IN MUSCLE. I. THE CONVERSION OF PHOSPHORYLASE BETA TO PHOSPHORYLASE ALPHA IN FROG SARTORIUS MUSCLE. J Biol Chem. 1964 Oct;239:3133–3138. [PubMed] [Google Scholar]
  9. DANFORTH W. H., LYON J. B., Jr GLYCOGENOLYSIS DURING TETANIC CONTRACTION OF ISOLATED MOUSE MUSCLES IN THE PRESENCE AND ABSENCE OF PHOSPHORYLASE A. J Biol Chem. 1964 Dec;239:4047–4050. [PubMed] [Google Scholar]
  10. Daegelen-Proux D., Alexandre Y., Dreyfus J. C. Phosphorylase kinase isoenzymes in deficient ICR/IAn mice. Eur J Biochem. 1978 Oct;90(2):369–375. doi: 10.1111/j.1432-1033.1978.tb12613.x. [DOI] [PubMed] [Google Scholar]
  11. Dawson M. J., Gadian D. G., Wilkie D. R. Contraction and recovery of living muscles studies by 31P nuclear magnetic resonance. J Physiol. 1977 Jun;267(3):703–735. doi: 10.1113/jphysiol.1977.sp011835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Edwards R. H., Jones D. A., Maunder C., Batra G. J. Needle biopsy for muscle chemistry. Lancet. 1975 Mar 29;1(7909):736–740. doi: 10.1016/s0140-6736(75)91642-6. [DOI] [PubMed] [Google Scholar]
  13. Goodman M. N., Lowenstein J. M. The purine nucleotide cycle. Studies of ammonia production by skeletal muscle in situ and in perfused preparations. J Biol Chem. 1977 Jul 25;252(14):5054–5060. [PubMed] [Google Scholar]
  14. Griffiths J. R., Rahim Z. H. Glycogen as a fuel for skeletal muscle. Biochem Soc Trans. 1978;6(3):530–534. doi: 10.1042/bst0060530. [DOI] [PubMed] [Google Scholar]
  15. Gross S. R., Bromwell K., Baanante I. V. Comparison of the mechanism of isoproterenol-stimulated glycogenolysis in skeletal muscle of normal and phosphorylase kinase-deficient mice (I strain). J Pharmacol Exp Ther. 1978 Jun;205(3):732–742. [PubMed] [Google Scholar]
  16. Gross S. R., Longshore M. A., Pangburn S. The phosphorylase kinase deficiency (Phk) locus in the mouse: evidence that the mutant allele codes for an enzyme with an abnormal structure. Biochem Genet. 1975 Oct;13(9-10):567–584. doi: 10.1007/BF00484916. [DOI] [PubMed] [Google Scholar]
  17. Gross S. R., Mayer S. E. Characterization of the phosphorylase b to a converting activity in skeletal muscle extracts of mice with the phosphorylase b kinase deficiency mutation. J Biol Chem. 1974 Nov 10;249(21):6710–6718. [PubMed] [Google Scholar]
  18. Gross S. R., Mayer S. E., Longshore M. A. Stimulation of glycogenolysis by beta adrenergic agonists in skeletal muscle of mice with the phosphorylase kinase deficiency mutation (I strain). J Pharmacol Exp Ther. 1976 Sep;198(3):526–538. [PubMed] [Google Scholar]
  19. Gross S. R., Mayer S. E. The phosphorylation of troponin B by phosphorylase b kinase in skeletal muscle of mice carrying the phosphorylase b kinase deficiency gene. Biochem Biophys Res Commun. 1973 Sep 18;54(2):823–830. doi: 10.1016/0006-291x(73)91498-8. [DOI] [PubMed] [Google Scholar]
  20. Hickson R. C., Rennie M. J., Conlee R. K., Winder W. W., Holloszy J. O. Effects of increased plasma fatty acids on glycogen utilization and endurance. J Appl Physiol Respir Environ Exerc Physiol. 1977 Nov;43(5):829–833. doi: 10.1152/jappl.1977.43.5.829. [DOI] [PubMed] [Google Scholar]
  21. Huijing F. A rapid enzymic method for glycogen estimation in very small tissue samples. Clin Chim Acta. 1970 Dec;30(3):567–572. doi: 10.1016/0009-8981(70)90246-9. [DOI] [PubMed] [Google Scholar]
  22. LYON J. B., Jr, PORTER J. The relation of phosphorylase to glycogenolysis in skeletal muscle and heart of mice. J Biol Chem. 1963 Jan;238:1–11. [PubMed] [Google Scholar]
  23. Lush C., Rahim Z. H., Perreitt D., Griffiths J. R. A microprocedure for extracting tissue nucleotides for analysis by high-performance liquid chromatography. Anal Biochem. 1979 Mar;93(2):227–232. doi: 10.1016/s0003-2697(79)80142-6. [DOI] [PubMed] [Google Scholar]
  24. Lyon J. B., Jr, Mayer S. E. Epinephrine induced formation of adenosine 3', 5'-monophosphate in mouse skeletal muscle. Biochem Biophys Res Commun. 1969 Feb 21;34(4):459–464. doi: 10.1016/0006-291x(69)90404-5. [DOI] [PubMed] [Google Scholar]
  25. Meyer F., Heilmeyer L. M., Jr, Haschke R. H., Fischer E. H. Control of phosphorylase activity in a muscle glycogen particle. I. Isolation and characterization of the protein-glycogen complex. J Biol Chem. 1970 Dec 25;245(24):6642–6648. [PubMed] [Google Scholar]
  26. NARAHARA H. T., OZAND P., CORI C. F. Studies of tissue permeability. VII. The effect of insulin on glucose penetration and phosphorylation in frog muscle. J Biol Chem. 1960 Dec;235:3370–3378. [PubMed] [Google Scholar]
  27. Perrett D. Simplified low-pressure high-resolution nucleotide analyser. J Chromatogr. 1976 Sep 15;124(2):187–196. doi: 10.1016/s0021-9673(00)89735-6. [DOI] [PubMed] [Google Scholar]
  28. Piras R., Staneloni R. In vivo regulation of rat muscle glycogen synthetase activity. Biochemistry. 1969 May;8(5):2153–2160. doi: 10.1021/bi00833a056. [DOI] [PubMed] [Google Scholar]
  29. Rahim Z. H., Perrett D., Griffiths J. R. Regulation in vivo of phosphorylase b in skeletal muscle of phosphorylase kinase-deficient mice [proceedings]. Biochem Soc Trans. 1978;6(1):164–166. doi: 10.1042/bst0060164. [DOI] [PubMed] [Google Scholar]
  30. Rahim Z. H., Perrett D., Griffiths J. R. Skeletal muscle purine nucleotide levels in normal and phosphorylase kinase deficient mice. FEBS Lett. 1976 Oct 15;69(1):203–206. doi: 10.1016/0014-5793(76)80687-4. [DOI] [PubMed] [Google Scholar]
  31. Ryman B. E., Whelan W. J. New aspects of glycogen metabolism. Adv Enzymol Relat Areas Mol Biol. 1971;34:285–443. doi: 10.1002/9780470122792.ch6. [DOI] [PubMed] [Google Scholar]
  32. SERAYDARIAN K., MOMMAERTS W. F., WALLNER A. The amount and compartmentalization of adenosine diphosphate in muscle. Biochim Biophys Acta. 1962 Dec 17;65:443–460. doi: 10.1016/0006-3002(62)90447-x. [DOI] [PubMed] [Google Scholar]
  33. Schultz V., Lowenstein J. M. The purine nucleotide cycle. Studies of ammonia production and interconversions of adenine and hypoxanthine nucleotides and nucleosides by rat brain in situ. J Biol Chem. 1978 Mar 25;253(6):1938–1943. [PubMed] [Google Scholar]
  34. Stull J. T., Mayer S. E. Regulation of phosphorylase activation in skeletal muscle in vivo. J Biol Chem. 1971 Sep 25;246(18):5716–5723. [PubMed] [Google Scholar]
  35. Terjung R. L., Baldwin K. M., Molé P. A., Klinkerfuss G. H., Holloszy J. O. Effect of running to exhaustion on skeletal muscle mitochondria: a biochemical study. Am J Physiol. 1972 Sep;223(3):549–554. doi: 10.1152/ajplegacy.1972.223.3.549. [DOI] [PubMed] [Google Scholar]
  36. Terjung R. L., Klinkerfuss G. H., Baldwin K. M., Winder W. W., Holloszy J. O. Effect of exhausting exercise on rat heart mitochondria. Am J Physiol. 1973 Aug;225(2):300–305. doi: 10.1152/ajplegacy.1973.225.2.300. [DOI] [PubMed] [Google Scholar]
  37. Tornheim K., Lowenstein J. M. The purine nucleotide cycle. The production of ammonia from aspartate by extracts of rat skeletal muscle. J Biol Chem. 1972 Jan 10;247(1):162–169. [PubMed] [Google Scholar]
  38. Varsànyi M., Gröschel-Stewart U., Heilmeyer M. G., Jr Characterization of a Ca2+ -dependent protein kinase in skeletal muscle membranes of I-strain and wild-type mice. Eur J Biochem. 1978 Jun 15;87(2):331–340. doi: 10.1111/j.1432-1033.1978.tb12382.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES