Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Jan 15;186(1):373–375. doi: 10.1042/bj1860373

Effect of tunicamycin on the metabolism of low-density lipoproteins by control and low-density-lipoprotein-receptor-deficient human skin fibroblasts.

I Filipovic, K von Figura
PMCID: PMC1161540  PMID: 7370019

Abstract

Preincubation of normal human skin fibroblasts with tunicamycin, which inhibits N-glycosylation of glycoproteins, resulted in a dose-dependent and reversible inhibition of binding and internalization of homologous low-density lipoproteins by the cells. The degradation of the internalized lipoproteins was not affected by the drug. Comparative studies with fibroblasts deficient in low-density-lipoprotein receptors indicated that tunicamycin exerts its inhibitory effect only via the receptor-mediated high-affinity binding and uptake of lipoproteins. These results suggest that expression of low-density-lipoprotein receptors on the cell surface of human skin fibroblasts depends on intact N-glycosylation.

Full text

PDF
373

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basu S. K., Goldstein J. L., Brown M. S. Characterization of the low density lipoprotein receptor in membranes prepared from human fibroblasts. J Biol Chem. 1978 Jun 10;253(11):3852–3856. [PubMed] [Google Scholar]
  2. Brown M. S., Goldstein J. L. Regulation of the activity of the low density lipoprotein receptor in human fibroblasts. Cell. 1975 Nov;6(3):307–316. doi: 10.1016/0092-8674(75)90182-8. [DOI] [PubMed] [Google Scholar]
  3. Chatterjee S., Kwiterovich P. O., Jr, Sekerke C. S. Effects of tunicamycin on the binding and degradation of low density lipoproteins and glycoprotein synthesis in cultured human fibroblasts. J Biol Chem. 1979 May 25;254(10):3704–3707. [PubMed] [Google Scholar]
  4. Di Ferrante N., Donnelly P. V., Di Ferrante D., Toma S., Gotto A. M., Jr Release of low density lipoprotein receptors from human fibroblasts or HeLa cells by tryptic digestion. Biochem Biophys Res Commun. 1978 Sep 29;84(2):366–373. doi: 10.1016/0006-291x(78)90179-1. [DOI] [PubMed] [Google Scholar]
  5. Duksin D., Bornstein P. Changes in surface properties of normal and transformed cells caused by tunicamycin, an inhibitor of protein glycosylation. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3433–3437. doi: 10.1073/pnas.74.8.3433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Filipovic I., Buddecke E. Role of net charge of low density lipoproteins in high affinity binding and uptake by cultured cells. Biochem Biophys Res Commun. 1979 May 28;88(2):485–490. doi: 10.1016/0006-291x(79)92074-6. [DOI] [PubMed] [Google Scholar]
  7. Filipovic I., Schwarzmann G., Mraz W., Wiegandt H., Buddecke E. Sialic-acid content of low-density lipoproteins controls their binding and uptake by cultured cells. Eur J Biochem. 1979 Jan 2;93(1):51–55. doi: 10.1111/j.1432-1033.1979.tb12793.x. [DOI] [PubMed] [Google Scholar]
  8. Fung C. H., Khachadurian A. K., Wang C. H., Durr I. F. Regulation of lipid synthesis by low density lipoproteins in cultured skin fibroblasts in homozygous familial hypercholesterolemia. Biochim Biophys Acta. 1977 Jun 22;487(3):445–457. doi: 10.1016/0005-2760(77)90215-6. [DOI] [PubMed] [Google Scholar]
  9. Goldstein J. L., Brown M. S. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974 Aug 25;249(16):5153–5162. [PubMed] [Google Scholar]
  10. Hart G. W., Lennarz W. J. Effects of tunicamycin on the biosynthesis of glycosaminoglycans by embryonic chick cornea. J Biol Chem. 1978 Aug 25;253(16):5795–5801. [PubMed] [Google Scholar]
  11. KALTENBACH J. P., KALTENBACH M. H., LYONS W. B. Nigrosin as a dye for differentiating live and dead ascites cells. Exp Cell Res. 1958 Aug;15(1):112–117. doi: 10.1016/0014-4827(58)90067-3. [DOI] [PubMed] [Google Scholar]
  12. Mahley R. W., Innerarity T. L., Pitas R. E., Weisgraber K. H., Brown J. H., Gross E. Inhibition of lipoprotein binding to cell surface receptors of fibroblasts following selective modification of arginyl residues in arginine-rich and B apoproteins. J Biol Chem. 1977 Oct 25;252(20):7279–7287. [PubMed] [Google Scholar]
  13. Olden K., Pratt R. M., Yamada K. M. Role of carbohydrates in protein secretion and turnover: effects of tunicamycin on the major cell surface glycoprotein of chick embryo fibroblasts. Cell. 1978 Mar;13(3):461–473. doi: 10.1016/0092-8674(78)90320-3. [DOI] [PubMed] [Google Scholar]
  14. Struck D. K., Lennarz W. J. Evidence for the participation of saccharide-lipids in the synthesis of the oligosaccharide chain of ovalbumin. J Biol Chem. 1977 Feb 10;252(3):1007–1013. [PubMed] [Google Scholar]
  15. Tkacz J. S., Lampen O. Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes. Biochem Biophys Res Commun. 1975 Jul 8;65(1):248–257. doi: 10.1016/s0006-291x(75)80086-6. [DOI] [PubMed] [Google Scholar]
  16. Weisgraber K. H., Innerarity T. L., Mahley R. W. Role of lysine residues of plasma lipoproteins in high affinity binding to cell surface receptors on human fibroblasts. J Biol Chem. 1978 Dec 25;253(24):9053–9062. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES