Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Jan 15;186(1):377–380. doi: 10.1042/bj1860377

Metabolism of hydrogen peroxide in Euglena gracilis Z by L-ascorbic acid peroxidase.

S Shigeoka, Y Nakano, S Kitaoka
PMCID: PMC1161541  PMID: 6768357

Abstract

Euglena gracilis was found to contain a peroxidase that specifically require L-ascorbic acid as the natural electron donor in the cytosol. The presence of an oxidation-reduction system metabolizing L-ascorbic acid was demonstrated in Euglena cells. Oxidation of L-ascorbic acid by the peroxidase, and the absence of ascorbic acid oxidase activity, suggests that the system functions to remove H2O2 in E. gracilis, which lacks catalase.

Full text

PDF
377

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asada K., Kanematsu S., Uchida K. Superoxide dismutases in photosynthetic organisms: absence of the cuprozinc enzyme in eukaryotic algae. Arch Biochem Biophys. 1977 Feb;179(1):243–256. doi: 10.1016/0003-9861(77)90109-6. [DOI] [PubMed] [Google Scholar]
  2. Asada K., Kiso K., Yoshikawa K. Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J Biol Chem. 1974 Apr 10;249(7):2175–2181. [PubMed] [Google Scholar]
  3. Attridge T. H. Phytochrome-mediated synthesis of ascorbic acid oxidase in mustard cotyledons. Biochim Biophys Acta. 1974 Sep 5;362(2):258–265. doi: 10.1016/0304-4165(74)90218-9. [DOI] [PubMed] [Google Scholar]
  4. Boveris A., Oshino N., Chance B. The cellular production of hydrogen peroxide. Biochem J. 1972 Jul;128(3):617–630. doi: 10.1042/bj1280617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown R. H., Collins N., Merrett M. J. Peroxidative Activity in Euglena gracilis. Plant Physiol. 1975 Jun;55(6):1123–1124. doi: 10.1104/pp.55.6.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  7. Dawson C. R., Strothkamp K. G., Krul K. G. Ascorbate oxidase and related copper proteins. Ann N Y Acad Sci. 1975 Sep 30;258:209–220. doi: 10.1111/j.1749-6632.1975.tb29281.x. [DOI] [PubMed] [Google Scholar]
  8. Graves L. B., Jr, Hanzely L., Trelease R. N. The occurrence and fine structural characterization of microbodies in Euglena gracilis. Protoplasma. 1971;72(2):141–152. doi: 10.1007/BF01279047. [DOI] [PubMed] [Google Scholar]
  9. Groden D., Beck E. H2O2 destruction by ascorbate-dependent systems from chloroplasts. Biochim Biophys Acta. 1979 Jun 5;546(3):426–435. doi: 10.1016/0005-2728(79)90078-1. [DOI] [PubMed] [Google Scholar]
  10. Halliwell B. The chloroplast at work. A review of modern developments in our understanding of chloroplast metabolism. Prog Biophys Mol Biol. 1978;33(1):1–54. doi: 10.1016/0079-6107(79)90024-5. [DOI] [PubMed] [Google Scholar]
  11. Kanematsu S., Asada K. Ferric and manganic superoxide dismutases in Euglena gracilis. Arch Biochem Biophys. 1979 Jul;195(2):535–545. doi: 10.1016/0003-9861(79)90380-1. [DOI] [PubMed] [Google Scholar]
  12. LAZZARINI R. A., SAN PIETRO A. The reduction of cytochrome c by photosynthetic pyridine nucleotide reductase and transhydrogenase. Biochim Biophys Acta. 1962 Aug 13;62:417–420. doi: 10.1016/0006-3002(62)90273-1. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lord J. M., Merrett M. J. The intracellular localization of glycollate oxidoreductase in Euglena gracilis. Biochem J. 1971 Sep;124(2):275–281. doi: 10.1042/bj1240275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MAPSON L. W., MOUSTAFA E. M. Ascorbic acid and glutathione as respiratory carriers in the respiration of pea seedlings. Biochem J. 1956 Feb;62(2):248–259. doi: 10.1042/bj0620248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MARRE E., ARRIGONI O. Ascorbic acid and photosynthesis. I. Monodehydroascorbic acid reductase of chloroplasts. Biochim Biophys Acta. 1958 Dec;30(3):453–457. doi: 10.1016/0006-3002(58)90089-1. [DOI] [PubMed] [Google Scholar]
  17. Omura T., Takesue S. A new method for simultaneous purification of cytochrome b5 and NADPH-cytochrome c reductase from rat liver microsomes. J Biochem. 1970 Feb;67(2):249–257. doi: 10.1093/oxfordjournals.jbchem.a129248. [DOI] [PubMed] [Google Scholar]
  18. Shigeoka S., Nakano Y., Kitaoka S. The biosynthetic pathway of L-ascorbic acid in Euglena gracilis Z. J Nutr Sci Vitaminol (Tokyo) 1979;25(4):299–307. doi: 10.3177/jnsv.25.299. [DOI] [PubMed] [Google Scholar]
  19. Sies H., Moss K. M. A role of mitochondrial glutathione peroxidase in modulating mitochondrial oxidations in liver. Eur J Biochem. 1978 Mar 15;84(2):377–383. doi: 10.1111/j.1432-1033.1978.tb12178.x. [DOI] [PubMed] [Google Scholar]
  20. Strothkamp R. E., Dawson C. R. A spectroscopic and kinetic investigation of anion binding to ascorbate oxidase. Biochemistry. 1977 May 3;16(9):1926–1929. doi: 10.1021/bi00628a026. [DOI] [PubMed] [Google Scholar]
  21. Tokunaga M., Nakano Y., Kitaoka S. Separation and properties of the NAD-linked and NADP-linked isozymes of succinic semialdehyde dehydrogenase in Euglena gracilis z. Biochim Biophys Acta. 1976 Mar 11;429(1):55–62. doi: 10.1016/0005-2744(76)90029-2. [DOI] [PubMed] [Google Scholar]
  22. Tokunaga M., Nakano Y., Kitaoka S. Subcellular localization of the GABA-shunt enzymes in Euglena gracilis strain Z. J Protozool. 1979 Aug;26(3):471–473. doi: 10.1111/j.1550-7408.1979.tb04655.x. [DOI] [PubMed] [Google Scholar]
  23. YAMAZAKI I., MASON H. S., PIETTE L. Identification, by electron paramagnetic resonance spectroscopy, of free radicals generated from substrates by peroxidase. J Biol Chem. 1960 Aug;235:2444–2449. [PubMed] [Google Scholar]
  24. Yokota A., Kitaoka S. Occurrence and operation of the glycollate--glyoxylate shuttle in mitochondria of Euglena gracilis Z. Biochem J. 1979 Oct 15;184(1):189–192. doi: 10.1042/bj1840189. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES