Abstract
A method is proposed by which site-specific reactivity probes that exhibit different reactivities in two ionization states can be used to detect association–activation phenomena that involve repositioning of acid/base groups in enzyme active centres. The pH-dependences of the apparent second-order rate constants (k) for the reactions of the thiol group of papain (EC 3.4.22.2) with a series of two-protonic-state reactivity probes are compared. The short-chain probes, 2,2′-dipyridyl disulphide and n-propyl 2-pyridyl disulphide, react at pH6 in adsorptive complexes and/or transition states with geometries that do not permit hydrogen-bonding of the pyridyl nitrogen atom with the active-centre imidazolium ion, as evidenced by the rate minima at pH6 and the rate maxima at pH4 provided by reagent protonation. Only when the probe molecule, e.g. 4-(N-aminoethyl 2′-pyridyl disulphide)-7-nitrobenzo-2-oxa-1,3-diazole [compound(III)], contains a long hydrophobic side chain is the reaction characterized by maximal rates at about pH6, as in the acylation step of the catalytic act (at pH6, kcompound III/k2,2′-dipyridyl disulphide ≃ 100). It is proposed that this striking difference in profile shape may result from binding of the hydrophobic side chain of compound (III) possibly in the S2-subsite of papain, which promotes a change in catalytic-site geometry involving repositioning of the imidazolium ion of histidine-159 and hydrogen-bonding with the N atom of the leaving group, as has been postulated to occur in the acylation step of substate hydrolysis.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angelides K. J., Fink A. L. Cryoenzymology of papain: reaction mechanism with an ester substrate. Biochemistry. 1978 Jun 27;17(13):2659–2668. doi: 10.1021/bi00606a032. [DOI] [PubMed] [Google Scholar]
- Baines B. S., Brocklehurst K. A necessary modification to the preparation of papain from any high-quality latex of Carica papaya and evidence for the structural integrity of the enzyme produced by traditional methods. Biochem J. 1979 Feb 1;177(2):541–548. doi: 10.1042/bj1770541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baines B. S., Brocklehurst K. A spectrophotometric method for the detection of contaminant chymopapains in preparations of papain. Selective modification of one type of thiol group in the chymopapains by a two-protonic-state reagent. Biochem J. 1978 Jul 1;173(1):345–347. doi: 10.1042/bj1730345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bendall M. R., Cartwright I. L., Clark P. I., Lowe G., Nurse D. Inhibition of papain by N-acyl-aminoacetaldehydes and N-acyl-aminopropanones. Evidence for hemithioacetal formation by a cross-saturation technique in nuclear-magnetic resonance spectroscopy. Eur J Biochem. 1977 Sep 15;79(1):201–209. doi: 10.1111/j.1432-1033.1977.tb11798.x. [DOI] [PubMed] [Google Scholar]
- Berger A., Schechter I. Mapping the active site of papain with the aid of peptide substrates and inhibitors. Philos Trans R Soc Lond B Biol Sci. 1970 Feb 12;257(813):249–264. doi: 10.1098/rstb.1970.0024. [DOI] [PubMed] [Google Scholar]
- Bizzozero S. A., Zweifel B. O. The importance of the conformation of the tetrahedral intermediate for the alpha-chymotrypsin-catalyzed hydrolysis of peptide substrates. FEBS Lett. 1975 Nov 1;59(1):105–108. doi: 10.1016/0014-5793(75)80351-6. [DOI] [PubMed] [Google Scholar]
- Brocklehurst K., Carlsson J., Kierstan M. P., Crook E. M. Covalent chromatography by thiol-disulfide interchange. Methods Enzymol. 1974;34:531–544. doi: 10.1016/s0076-6879(74)34069-4. [DOI] [PubMed] [Google Scholar]
- Brocklehurst K., Carlsson J., Kierstan M. P., Crook E. M. Covalent chromatography. Preparation of fully active papain from dried papaya latex. Biochem J. 1973 Jul;133(3):573–584. doi: 10.1042/bj1330573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brocklehurst K., Dixon H. B. The pH-dependence of second-order rate constants of enzyme modification may provide free-reactant pKa values. Biochem J. 1977 Dec 1;167(3):859–862. doi: 10.1042/bj1670859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brocklehurst K., Little G. Reactions of papain and of low-molecular-weight thiols with some aromatic disulphides. 2,2'-Dipyridyl disulphide as a convenient active-site titrant for papain even in the presence of other thiols. Biochem J. 1973 May;133(1):67–80. doi: 10.1042/bj1330067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brocklehurst K., Malthouse J. P. Mechanism of the reaction of papain with substrate-derived diazomethyl ketones. Implications for the difference in site specificity of halomethyl ketones for serine proteinases and cysteine proteinases and for stereoelectronic requirements in the papain catalytic mechanism. Biochem J. 1978 Nov 1;175(2):761–764. doi: 10.1042/bj1750761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brocklehurst K. Specific covalent modification of thiols: applications in the study of enzymes and other biomolecules. Int J Biochem. 1979;10(4):259–274. doi: 10.1016/0020-711x(79)90088-0. [DOI] [PubMed] [Google Scholar]
- Brocklehurst K. The equilibrium assumption is valid for the kinetic treatment of most time-dependent protein-modification reactions. Biochem J. 1979 Sep 1;181(3):775–778. doi: 10.1042/bj1810775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drenth J., Jansonius J. N., Koekoek R., Swen H. M., Wolthers B. G. Structure of papain. Nature. 1968 Jun 8;218(5145):929–932. doi: 10.1038/218929a0. [DOI] [PubMed] [Google Scholar]
- Fink A. L., Gwyn C. Conformational changes in papain during catalysis and ligand binding. Biochemistry. 1974 Mar 12;13(6):1190–1195. doi: 10.1021/bi00703a601. [DOI] [PubMed] [Google Scholar]
- Garavito R. M., Rossmann M. G., Argos P., Eventoff W. Convergence of active center geometries. Biochemistry. 1977 Nov 15;16(23):5065–5071. doi: 10.1021/bi00642a019. [DOI] [PubMed] [Google Scholar]
- Gorenstein D. G., Findlay J. B., Luxon B. A., Kar D. Stereoelectronic control in carbon-oxygen and phosphorus-oxygen bond breaking processes. Ab initio calculations and speculations on the mechanism of action of ribonuclease A, staphylococcal nuclease, and lysozyme. J Am Chem Soc. 1977 May 11;99(10):3473–3479. doi: 10.1021/ja00452a047. [DOI] [PubMed] [Google Scholar]
- Henry A. C., Kirsch J. F. Papain-catalyzed reactions of esters with alcohols. The nature of the rate-determining step. Biochemistry. 1967 Nov;6(11):3536–3544. doi: 10.1021/bi00863a027. [DOI] [PubMed] [Google Scholar]
- Hollaway M. R., Hardman M. J. Evidence for a rate-limiting conformation change in the catalytic steps of the ficin and papain-catalysed hydrolyses of benzyloxycarbonyl-L-lysine p-nitrophenyl ester. Eur J Biochem. 1973 Feb 1;32(3):537–546. doi: 10.1111/j.1432-1033.1973.tb02639.x. [DOI] [PubMed] [Google Scholar]
- Koshland D. E., Jr, Neet K. E. The catalytic and regulatory properties of enzymes. Annu Rev Biochem. 1968;37:359–410. doi: 10.1146/annurev.bi.37.070168.002043. [DOI] [PubMed] [Google Scholar]
- Kurachi K., Fujikawa K., Schmer G., Davie E. W. Inhibition of bovine factor IXa and factor Xabeta by antithrombin III. Biochemistry. 1976 Jan 27;15(2):373–377. doi: 10.1021/bi00647a021. [DOI] [PubMed] [Google Scholar]
- Lake A. W., Lowe G. The kinetics of papain- and ficin-catalysed hydrolyses in the presence of alcohols. Biochem J. 1966 Nov;101(2):402–410. doi: 10.1042/bj1010402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malthouse J. P., Brocklehurst K. Intramolecular inhibition by enzyme of site-specific modification reactions can mask pKa values characteristic of the reaction pathway: do the side chains of aspartic acid-158 and lysine-156 of papain form an ion-pair? [proceedings]. Biochem Soc Trans. 1978;6(1):250–252. doi: 10.1042/bst0060250. [DOI] [PubMed] [Google Scholar]
- Malthouse J. P., Brocklehurst K. Preparation of fully active ficin from Ficus glabrata by covalent chromatography and characterization of its active centre by using 2,2'-depyridyl disulphide as a reactivity probe. Biochem J. 1976 Nov;159(2):221–234. doi: 10.1042/bj1590221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattis J. A., Fruton J. S. Kinetics of the action of papain on fluorescent peptide substrates. Biochemistry. 1976 May 18;15(10):2191–2194. doi: 10.1021/bi00655a025. [DOI] [PubMed] [Google Scholar]
- Page M. I., Jencks W. P. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1678–1683. doi: 10.1073/pnas.68.8.1678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz R. M., Konovessi-Panayotatos A., Peters J. R. Thermodynamics of binding to native alpha-chymotrypsin and to forms of alpha-chymotrypsin in which catalytically essential residues are modified; a study of "productive" and "nonproductive" associations. Biochemistry. 1977 May 17;16(10):2194–2202. doi: 10.1021/bi00629a024. [DOI] [PubMed] [Google Scholar]
- Shipton M., Brochlehurst K. Characterization of the papain active centre by using two-protonic-state electrophiles as reactivity probes. Evidence for nucleophilic reactivity in the un-interrupted cysteine-25-histidine-159 interactive system. Biochem J. 1978 May 1;171(2):385–401. doi: 10.1042/bj1710385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Storm D. R., Koshland D. E. A source for the special catalytic power of enzymes: orbital steering. Proc Natl Acad Sci U S A. 1970 Jun;66(2):445–452. doi: 10.1073/pnas.66.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stuchbury T., Shipton M., Norris R., Malthouse J. P., Brocklehurst K., Herbert J. A., Suschitzky H. A reporter group delivery system with both absolute and selective specificity for thiol groups and an improved fluorescent probe containing the 7-nitrobenzo-2-oxa-1,3-diazole moiety. Biochem J. 1975 Nov;151(2):417–432. doi: 10.1042/bj1510417. [DOI] [PMC free article] [PubMed] [Google Scholar]
