Abstract
Carbon monoxide inhibited the removal of C-32 of dihydrolanosterol (I), but not of its metabolites 5 alpha-lanost-8-ene-3 beta,32-diol (II) and 3 beta-hydroxy-5 alpha-lanost-8-en-32-al (III). It appears therefore that cytochrome P-450 is a component of the enzyme system required to initiate oxidation of the 14 alpha-methyl group, but not of that responsible for the subsequent oxidation steps required for elimination of C-32 as formic acid. Non-radioactive compounds (II) and (III), when added to cell-free systems actively converting dihydrolanosterol into cholesterol, inhibited 14 alpha-demethylation measured by the rate of formation of labelled cholesterol from dihydro[1,7,15,22,26,30-14C]lanosterol or of labelled formic acid from dihydro[32-14C]lanosterol. However, neither compound (II) nor compound (III) accumulated radioactive label under these conditions. These observations could be attributed partly to inhibition of the initial oxidation of the 14 alpha-methyl group by compounds (II) and (III).
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akhtar M., Alexander K., Boar R. B., McGhie J. F., Barton D. H. Chemical and enzymic studies on the characterization of intermediates during the removal of the 14alpha-methyl group in cholesterol biosynthesis. The use of 32-functionalized lanostane derivatives. Biochem J. 1978 Mar 1;169(3):449–463. doi: 10.1042/bj1690449b. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akhtar M., Wilton D. C., Watkinson I. A., Rahimtula A. D. Substrate activation in pyridine nucleotide-linked reactions: illustrations from the steroid field. Proc R Soc Lond B Biol Sci. 1972 Feb 15;180(1059):167–177. doi: 10.1098/rspb.1972.0012. [DOI] [PubMed] [Google Scholar]
- CLAYTON R. B., BLOCH K. Biological synthesis of lanosterol and agnosterol. J Biol Chem. 1956 Jan;218(1):305–318. [PubMed] [Google Scholar]
- Fiecchi A., GAlli Kienle M., Scala A., Galli G., Grossi Paoletti E., Cattabeni F., Paoletti R. Hydrogen exchange and double bond formation in cholesterol biosynthesis. Proc R Soc Lond B Biol Sci. 1972 Feb 15;180(1059):147–165. doi: 10.1098/rspb.1972.0011. [DOI] [PubMed] [Google Scholar]
- Fried J., Dudowitz A., Brown J. W. Enzymatic conversion of 32-oxygenated delta-7-lanosterol derivatives and of delta-8(14)-4,4-dimethyl-cholestenol to cholesterol. Biochem Biophys Res Commun. 1968 Aug 13;32(3):568–574. doi: 10.1016/0006-291x(68)90701-8. [DOI] [PubMed] [Google Scholar]
- GAUTSCHI F., BLOCH K. Synthesis of isomeric 4,4-dimethylcholestenols and identification of a lanosterol metabolite. J Biol Chem. 1958 Dec;233(6):1343–1347. [PubMed] [Google Scholar]
- Gibbons G. F., Mitropoulos K. A. Effect of trans-1,4-bis(2-chlorobenzylaminomethyl) cyclohexane dihydrochloride and carbon monoxide on hepatic cholesterol biosynthesis from 4,4,-dimethyl sterols in vitro. Biochim Biophys Acta. 1975 Feb 20;380(2):270–281. doi: 10.1016/0005-2760(75)90013-2. [DOI] [PubMed] [Google Scholar]
- Gibbons G. F., Mitropoulos K. A., Pullinger C. R. Lanosterol 14alpha-demethylase. The metabolism of some potential intermediates by cell-free systems from rat liver. Biochem Biophys Res Commun. 1976 Apr 5;69(3):781–789. doi: 10.1016/0006-291x(76)90943-8. [DOI] [PubMed] [Google Scholar]
- Gibbons G. F., Mitropoulos K. A. The effect of carbon monoxide on the nature of the accumulated 4,4-dimethyl sterol precursors of cholesterol during its biosynthesis from (2-14C)mevalonic acid in vitro. Biochem J. 1973 Mar;132(3):439–448. doi: 10.1042/bj1320439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons G. F., Mitropoulos K. A. The rôle of cytochrome P-450 in cholesterol biosynthesis. Eur J Biochem. 1973 Dec 3;40(1):267–273. doi: 10.1111/j.1432-1033.1973.tb03194.x. [DOI] [PubMed] [Google Scholar]
- Gibbons G. F. The metabolic sequence by which some 4,4-dimethyl sterols are converted into cholesterol. Biochem J. 1974 Oct;144(1):59–68. doi: 10.1042/bj1440059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KNAUSS H. J., PORTER J. W., WASSON G. The biosynthesis of mevalonic acid from 1-C14-acetate by a rat liver enzyme system. J Biol Chem. 1959 Nov;234:2835–2840. [PubMed] [Google Scholar]
- Kandutsch A. A., Chen H. W., Heiniger H. J. Biological activity of some oxygenated sterols. Science. 1978 Aug 11;201(4355):498–501. doi: 10.1126/science.663671. [DOI] [PubMed] [Google Scholar]
- LANGDON R. G., BLOCH K. The biosynthesis of squalene. J Biol Chem. 1953 Jan;200(1):129–134. [PubMed] [Google Scholar]
- Martin J. A., Huntoon S., Schroepfer G. J., Jr Enzymatic conversion of 14-alpha-methyl-cholest-7-en-3 beta, 15 zeta-diol to cholesterol. Biochem Biophys Res Commun. 1970;39(6):1170–1174. doi: 10.1016/0006-291x(70)90683-2. [DOI] [PubMed] [Google Scholar]
- Mitropoulos K. A., Gibbons G. F., Reeves B. E. Lanosterol 14alpha-demethylase. Similarity of the enzyme system from yeast and rat liver. Steroids. 1976 Jun;27(6):821–829. doi: 10.1016/0039-128x(76)90141-0. [DOI] [PubMed] [Google Scholar]
- Ono T., Bloch K. Solubilization and partial characterization of rat liver squalene epoxidase. J Biol Chem. 1975 Feb 25;250(4):1571–1579. [PubMed] [Google Scholar]
- Rodwell V. W., Nordstrom J. L., Mitschelen J. J. Regulation of HMG-CoA reductase. Adv Lipid Res. 1976;14:1–74. doi: 10.1016/b978-0-12-024914-5.50008-5. [DOI] [PubMed] [Google Scholar]
- Schroepfer G. J., Jr, Parish E. J., Chen H. W., Kandutsch A. A. Inhibition of sterol biosynthesis in L cells and mouse liver cells by 15-oxygenated sterols. J Biol Chem. 1977 Dec 25;252(24):8975–8980. [PubMed] [Google Scholar]
- Schroepfer G. J., Jr, Pascal R. A., Jr, Shaw R., Kandutsch A. A. Inhibition of sterol biosynthesis by 14alpha-hydroxymethyl sterols. Biochem Biophys Res Commun. 1978 Aug 14;83(3):1024–1031. doi: 10.1016/0006-291x(78)91498-5. [DOI] [PubMed] [Google Scholar]
