Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Feb 15;186(2):469–473. doi: 10.1042/bj1860469

Calcium ion-stimulated phosphorylation of myelin proteins.

P V Sulakhe, E H Petrali, B J Thiessen, E R Davis
PMCID: PMC1161598  PMID: 6246886

Abstract

Myelin isolated from the central and peripheral nervous system contains a Mg2+-dependent protein kinase that catalyses phosphorylation of myelin-specific proteins. This phosphorylation is markedly stimulated by Ca2+ but not by cyclic AMP. Evidence was obtained that suggested an involvement of calmodulin-like protein in the stimulatory effects of Ca2+ on myelin phosphorylation.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carnegie P. R., Dunkley P. R., Kemp B. E., Murray A. W. Phosphorylation of selected serine and threonine residues in myelin basic protein by endogenous and exogenous protein kinases. Nature. 1974 May 10;249(453):147–150. doi: 10.1038/249147a0. [DOI] [PubMed] [Google Scholar]
  2. Carnegie P. R., Kemp B. E., Dunkley P. R., Murray A. W. Phosphorylation of myelin basic protein by an adenosine 3':5'-cyclic monophosphate-dependent protein kinase. Biochem J. 1973 Nov;135(3):569–572. doi: 10.1042/bj1350569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dunkley P. R., Holmes H., Rodnight R. Phosphorylation of synaptic-membrane proteins from ox cerebral cortex in vitro. Partition of substrates and protein kinase activities with triton X-100. Biochem J. 1976 Sep 1;157(3):661–666. doi: 10.1042/bj1570661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Greenfield S., Brostoff S., Eylar E. H., Morell P. Protein composition of myelin of the peripheral nervous system. J Neurochem. 1973 Apr;20(4):1207–1216. doi: 10.1111/j.1471-4159.1973.tb00089.x. [DOI] [PubMed] [Google Scholar]
  5. Hemminki K. Calcium binding to brain plasma membranes. Biochim Biophys Acta. 1974 Sep 6;363(2):202–210. doi: 10.1016/0005-2736(74)90059-5. [DOI] [PubMed] [Google Scholar]
  6. Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. 8. An assay method for the measurement of adenosine 3',5'-monophosphate in various tissues and a study of agents influencing its level in adipose cells. J Biol Chem. 1970 Aug 25;245(16):4067–4073. [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. McNamara J. O., Appel S. H. Myelin basic protein phosphatase activity in rat brain. J Neurochem. 1977 Jul;29(1):27–35. doi: 10.1111/j.1471-4159.1977.tb03920.x. [DOI] [PubMed] [Google Scholar]
  9. Miyamoto E., Kakiuchi S. In vitro and in vivo phosphorylation of myelin basic protein by exogenous and endogenous adenosine 3':5'-monophosphate-dependent protein kinases in brain. J Biol Chem. 1974 May 10;249(9):2769–2777. [PubMed] [Google Scholar]
  10. Miyamoto E., Kakiuchi S. Phosphoprotein phosphatases for myelin basic protein in myelin and cytosol fractions of brain. Biochim Biophys Acta. 1975 Apr 19;384(2):458–465. doi: 10.1016/0005-2744(75)90046-7. [DOI] [PubMed] [Google Scholar]
  11. Miyamoto E. Phosphorylation of endogenous proteins in myelin of rat brain. J Neurochem. 1976 Mar;26(3):573–577. doi: 10.1111/j.1471-4159.1976.tb01513.x. [DOI] [PubMed] [Google Scholar]
  12. Miyamoto E. Protein kinases in myelin of rat brain: solubilization and characterization. J Neurochem. 1975 Mar;24(3):503–512. doi: 10.1111/j.1471-4159.1975.tb07668.x. [DOI] [PubMed] [Google Scholar]
  13. Norton W. T., Poduslo S. E. Myelination in rat brain: method of myelin isolation. J Neurochem. 1973 Oct;21(4):749–757. doi: 10.1111/j.1471-4159.1973.tb07519.x. [DOI] [PubMed] [Google Scholar]
  14. Singh H., Spritz N. Protein kinases associated with peripheral nerve myelin. 1. Phosphorylation of endogenous myelin proteins and exogenous substrates. Biochim Biophys Acta. 1976 Oct 5;448(2):325–337. doi: 10.1016/0005-2736(76)90246-7. [DOI] [PubMed] [Google Scholar]
  15. Steck A. J., Appel S. H. Phosphorylation of myelin basic protein. J Biol Chem. 1974 Sep 10;249(17):5416–5420. [PubMed] [Google Scholar]
  16. Teo T. S., Wang J. H. Mechanism of activation of a cyclic adenosine 3':5'-monophosphate phosphodiesterase from bovine heart by calcium ions. Identification of the protein activator as a Ca2+ binding protein. J Biol Chem. 1973 Sep 10;248(17):5950–5955. [PubMed] [Google Scholar]
  17. Teo T. S., Wang T. H., Wang J. H. Purification and properties of the protein activator of bovine heart cyclic adenosine 3',5'-monophosphate phosphodiesterase. J Biol Chem. 1973 Jan 25;248(2):588–595. [PubMed] [Google Scholar]
  18. Wang J. H., Desai R. Modulator binding protein. Bovine brain protein exhibiting the Ca2+-dependent association with the protein modulator of cyclic nucleotide phosphodiesterase. J Biol Chem. 1977 Jun 25;252(12):4175–4184. [PubMed] [Google Scholar]
  19. Yourist J. E., Ahmad F., Brady A. H. Solubilization and partial characterization of a phosphoprotein phosphatase from human myelin. Biochim Biophys Acta. 1978 Feb 10;522(2):452–464. doi: 10.1016/0005-2744(78)90078-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES