Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Feb 15;186(2):591–598. doi: 10.1042/bj1860591

Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro

Christopher Kirby 1, Jacqui Clarke 1, Gregory Gregoriadis 1
PMCID: PMC1161612  PMID: 7378067

Abstract

Small unilamellar neutral, negatively and positively charged liposomes composed of egg phosphatidylcholine, various amounts of cholesterol and, when appropriate, phosphatidic acid or stearylamine and containing 6-carboxyfluorescein were injected into mice, incubated with mouse whole blood, plasma or serum or stored at 4°C. Liposomal stability, i.e. the extent to which 6-carboxyfluorescein is retained by liposomes, was dependent on their cholesterol content. (1) Cholesterol-rich (egg phosphatidylcholine/cholesterol, 7:7 molar ratio) liposomes, regardless of surface charge, remained stable in the blood of intravenously injected animals for up to at least 400min. In addition, stability of cholesterol-rich liposomes was largely maintained in vitro in the presence of whole blood, plasma or serum for at least 90min. (2) Cholesterol-poor (egg phosphatidylcholine/cholesterol, 7:2 molar ratio) or cholesterol-free (egg phosphatidylcholine) liposomes lost very rapidly (at most within 2min) much of their stability after intravenous injection or upon contact with whole blood, plasma or serum. Whole blood and to some extent plasma were less detrimental to stability than was serum. (3) After intraperitoneal injection, neutral cholesterol-rich liposomes survived in the peritoneal cavity to enter the blood circulation in their intact form. Liposomes injected intramuscularly also entered the circulation, although with somewhat diminished stability. (4) Stability of neutral and negatively charged cholesterol-rich liposomes stored at 4°C was maintained for several days, and by 53 days it had declined only moderately. Stored liposomes retained their unilamellar structure and their ability to remain stable in the blood after intravenous injection. (5) Control of liposomal stability by adjusting their cholesterol content may help in the design of liposomes for effective use in biological systems in vivo and in vitro.

Full text

PDF
591

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Black C. D., Gregoriadis G. Interaction of liposomes with blood plasma proteins. Biochem Soc Trans. 1976;4(2):253–256. doi: 10.1042/bst0040253a. [DOI] [PubMed] [Google Scholar]
  2. Bruckdorfer K. R., Edwards P. A., Green C. Properties of aqueous dispersions of phospholipid and cholesterol. Eur J Biochem. 1968 May;4(4):506–511. doi: 10.1111/j.1432-1033.1968.tb00241.x. [DOI] [PubMed] [Google Scholar]
  3. Dapergolas G., Neerunjun E. D., Gregoriadis G. Penetration of target areas in the rat by liposome-associated bleomycin, glucose oxidase and insulin. FEBS Lett. 1976 Apr 1;63(2):235–239. doi: 10.1016/0014-5793(76)80102-0. [DOI] [PubMed] [Google Scholar]
  4. Demel R. A., Bruckdorfer K. R., van Deenen L. L. The effect of sterol structure on the permeability of lipomes to glucose, glycerol and Rb + . Biochim Biophys Acta. 1972 Jan 17;255(1):321–330. doi: 10.1016/0005-2736(72)90031-4. [DOI] [PubMed] [Google Scholar]
  5. Demel R. A., De Kruyff B. The function of sterols in membranes. Biochim Biophys Acta. 1976 Oct 26;457(2):109–132. doi: 10.1016/0304-4157(76)90008-3. [DOI] [PubMed] [Google Scholar]
  6. Dingle J. T., Gordon J. L., Hazleman B. L., Knight C. G., Page Thomas D. P., Phillips N. C., Shaw I. H., Fildes F. J., Oliver J. E., Jones G. Novel treatment for joint inflammation. Nature. 1978 Jan 26;271(5643):372–373. doi: 10.1038/271372a0. [DOI] [PubMed] [Google Scholar]
  7. Gregoriadis G., Davis C. Stability of liposomes in vivo and in vitro is promoted by their cholesterol content and the presence of blood cells. Biochem Biophys Res Commun. 1979 Aug 28;89(4):1287–1293. doi: 10.1016/0006-291x(79)92148-x. [DOI] [PubMed] [Google Scholar]
  8. Gregoriadis G. Drug entrapment in liposomes. FEBS Lett. 1973 Nov 1;36(3):292–296. doi: 10.1016/0014-5793(73)80394-1. [DOI] [PubMed] [Google Scholar]
  9. Gregoriadis G. Enzyme entrapment in liposomes. Methods Enzymol. 1976;44:218–227. doi: 10.1016/s0076-6879(76)44019-3. [DOI] [PubMed] [Google Scholar]
  10. Gregoriadis G., Neerunjun D. E. Control of the rate of hepatic uptake and catabolism of liposome-entrapped proteins injected into rats. Possible therapeutic applications. Eur J Biochem. 1974 Aug 15;47(1):179–185. doi: 10.1111/j.1432-1033.1974.tb03681.x. [DOI] [PubMed] [Google Scholar]
  11. Gregoriadis G., Neerunjun D. E., Hunt R. Fate of a liposome-associated agent injected into normal and tumour-bearing rodents. Attempts to improve localization in tumour tissues. Life Sci. 1977 Aug 1;21(3):357–369. doi: 10.1016/0024-3205(77)90516-1. [DOI] [PubMed] [Google Scholar]
  12. Gregoriadis G., Ryman B. E. Lysosomal localization of -fructofuranosidase-containing liposomes injected into rats. Biochem J. 1972 Aug;129(1):123–133. doi: 10.1042/bj1290123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Juliano R. L., Stamp D. Pharmacokinetics of liposome-encapsulated anti-tumor drugs. Studies with vinblastine, actinomycin D, cytosine arabinoside, and daunomycin. Biochem Pharmacol. 1978 Jan 1;27(1):21–27. doi: 10.1016/0006-2952(78)90252-6. [DOI] [PubMed] [Google Scholar]
  14. Juliano R. L., Stamp D. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys Res Commun. 1975 Apr 7;63(3):651–658. doi: 10.1016/s0006-291x(75)80433-5. [DOI] [PubMed] [Google Scholar]
  15. Ladbrooke B. D., Williams R. M., Chapman D. Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction. Biochim Biophys Acta. 1968 Apr 29;150(3):333–340. doi: 10.1016/0005-2736(68)90132-6. [DOI] [PubMed] [Google Scholar]
  16. Manesis E. K., Cameron C. H., Gregoriadis G. Hepatitis B surface antigen-containing liposomes enhance humoral and cell-mediated immunity to the antigen. FEBS Lett. 1979 Jun 1;102(1):107–111. doi: 10.1016/0014-5793(79)80939-4. [DOI] [PubMed] [Google Scholar]
  17. Ostro M. J., Giacomoni D., Lavelle D., Paxton W., Dray S. Evidence for translation of rabbit globin mRNA after liposome-mediated insertion into a human cell line. Nature. 1978 Aug 31;274(5674):921–923. doi: 10.1038/274921a0. [DOI] [PubMed] [Google Scholar]
  18. Papahadjopoulos D., Jacobson K., Nir S., Isac T. Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim Biophys Acta. 1973 Jul 6;311(3):330–348. doi: 10.1016/0005-2736(73)90314-3. [DOI] [PubMed] [Google Scholar]
  19. Scherphof G., Roerdink F., Waite M., Parks J. Disintegration of phosphatidylcholine liposomes in plasma as a result of interaction with high-density lipoproteins. Biochim Biophys Acta. 1978 Aug 17;542(2):296–307. doi: 10.1016/0304-4165(78)90025-9. [DOI] [PubMed] [Google Scholar]
  20. Tyrrell D. A., Richardson V. J., Ryman B. E. The effect of serum protein fractions on liposome-cell interactions in cultured cells and the perfused rat liver. Biochim Biophys Acta. 1977 Apr 27;497(2):469–480. doi: 10.1016/0304-4165(77)90204-5. [DOI] [PubMed] [Google Scholar]
  21. Weinstein J. N., Yoshikami S., Henkart P., Blumenthal R., Hagins W. A. Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker. Science. 1977 Feb 4;195(4277):489–492. doi: 10.1126/science.835007. [DOI] [PubMed] [Google Scholar]
  22. Weissmann G., Bloomgarden D., Kaplan R., Cohen C., Hoffstein S., Collins T., Gotlieb A., Nagle D. A general method for the introduction of enzymes, by means of immunoglobulin-coated liposomes, into lysosomes of deficient cells. Proc Natl Acad Sci U S A. 1975 Jan;72(1):88–92. doi: 10.1073/pnas.72.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wilson T., Papahadjopoulos D., Taber R. Biological properties of poliovirus encapsulated in lipid vesicles: antibody resistance and infectivity in virus-resistant cells. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3471–3475. doi: 10.1073/pnas.74.8.3471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wreschner D. H., Gregoriadis G. Formation of hybrid liposomes from negatively and positively charged liposomes: a possible model for the study of membrane fusion. Biochem Soc Trans. 1978;6(5):922–925. doi: 10.1042/bst0060922. [DOI] [PubMed] [Google Scholar]
  25. Zeki S. M. Functional specialisation in the visual cortex of the rhesus monkey. Nature. 1978 Aug 3;274(5670):423–428. doi: 10.1038/274423a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES