Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Dec 1;183(3):513–517. doi: 10.1042/bj1830513

The nature of the slow metal ion-dependent conformational transition in bovine prothrombin.

H C Marsh, M E Scott, R G Hiskey, K A Koehler
PMCID: PMC1161631  PMID: 540028

Abstract

Kinetic parameters characterizing the slow structural isomerization observed via metal ion-dependent intrinsic fluorescence quenching of bovine prothrombin Fragment 1 have been determined. From forward and reverse rate constants, an equilibrium constant of approx. 0.25 is calculated. This result is consistent with the hypothesis that there exists, in the absence of metal ions, an equilibrium between two forms of bovine Fragment 1, one of which can interact rapidly with Ca2+ and subsequently with phospholipid. The other form of Fragment 1 cannot interact with Ca2+ in a manner that yields a phospholipid-binding form of the protein. Interconversion of these two forms of Fragment 1 occurs and may involve the isomerization of a proline residue.

Full text

PDF
513

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandts J. F., Halvorson H. R., Brennan M. Consideration of the Possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry. 1975 Nov 4;14(22):4953–4963. doi: 10.1021/bi00693a026. [DOI] [PubMed] [Google Scholar]
  2. Bächinger H. P., Bruckner P., Timpl R., Engel J. The role of cis-trans isomerization of peptide bonds in the coil leads to and comes from triple helix conversion of collagen. Eur J Biochem. 1978 Oct 16;90(3):605–613. doi: 10.1111/j.1432-1033.1978.tb12641.x. [DOI] [PubMed] [Google Scholar]
  3. Cheng H. N., Bovey F. A. Cis-trans equilibrium and kinetic studies of acetyl-L-proline and glycyl-L-proline. Biopolymers. 1977 Jul;16(7):1465–1472. doi: 10.1002/bip.1977.360160707. [DOI] [PubMed] [Google Scholar]
  4. Lin L. N., Brandts J. F. Evidence suggesting that some proteolytic enzymes may cleave only the trans form of the peptide bond. Biochemistry. 1979 Jan 9;18(1):43–47. doi: 10.1021/bi00568a007. [DOI] [PubMed] [Google Scholar]
  5. Lin L. N., Brandts J. F. Further evidence suggesting that the slow phase in protein unfolding and refolding is due to proline isomerization: a kinetic study of carp parvalbumins. Biochemistry. 1978 Sep 19;17(19):4102–4110. doi: 10.1021/bi00612a036. [DOI] [PubMed] [Google Scholar]
  6. Mann K. G. Prothrombin. Methods Enzymol. 1976;45:123–156. doi: 10.1016/s0076-6879(76)45016-4. [DOI] [PubMed] [Google Scholar]
  7. Nelsestuen G. L., Broderius M., Martin G. Role of gamma-carboxyglutamic acid. Cation specificity of prothrombin and factor X-phospholipid binding. J Biol Chem. 1976 Nov 25;251(22):6886–6893. [PubMed] [Google Scholar]
  8. Nelsestuen G. L. Role of gamma-carboxyglutamic acid. An unusual protein transition required for the calcium-dependent binding of prothrombin to phospholipid. J Biol Chem. 1976 Sep 25;251(18):5648–5656. [PubMed] [Google Scholar]
  9. Prendergast F. G., Mann K. G. Differentiation of metal ion-induced transitions of prothrombin fragment 1. J Biol Chem. 1977 Feb 10;252(3):840–850. [PubMed] [Google Scholar]
  10. Scott M. E., Koehler K. A., Hiskey R. G. The effects of calcium ions and pH on bovine prothrombin fragment 1. Intrinsic fluroescence studies. Biochem J. 1979 Mar 1;177(3):879–886. doi: 10.1042/bj1770879. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES