Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Dec 1;183(3):595–604. doi: 10.1042/bj1830595

Nucleotide sequences of chloroplast 5S ribosomal ribonucleic acid in flowering plants.

T A Dyer, C M Bowman
PMCID: PMC1161641  PMID: 540034

Abstract

Evidence for the sequence of duckweed (Lemna minor) chloroplast 5S rRNA was derived from the analysis of partial and complete enzymic digests of the 32P-labelled molecule. The possible sequence of the chloroplast 5S rRNA from three other flowering plants was deduced by complete digestion with T1 ribonuclease and comparison of the sequences of the oligonucleotide products with homologous sequences in the duckweed 5S rRNA. This analysis indicates that the chloroplast 5S rNA species differ appreciably from their cytosol counterparts but bear a strong resemblance to one another and to the 5S rRNA species of prokaryotes. Structural features apparently common to all 5S rRNA molecules are also discussed.

Full text

PDF
595

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedbrook J. R., Kolodner R., Bogorad L. Zea mays chloroplast ribosomal RNA genes are part of a 22,000 base pair inverted repeat. Cell. 1977 Aug;11(4):739–749. doi: 10.1016/0092-8674(77)90288-4. [DOI] [PubMed] [Google Scholar]
  2. Benhamou J., Jourdan R., Jordan B. R. Sequence of Drosophila 5S RNA synthesized by cultured cells and by the insect at different developmental stages. Homogeneity of the product and homologies with other 5S RNA's at the level of primary and secondary structure. J Mol Evol. 1977 May 13;9(3):279–298. doi: 10.1007/BF01796116. [DOI] [PubMed] [Google Scholar]
  3. Bogorad L. Evolution of organelles and eukaryotic genomes. Science. 1975 May 30;188(4191):891–898. doi: 10.1126/science.1138359. [DOI] [PubMed] [Google Scholar]
  4. Bowman C. M., Dyer T. A. 4.5S ribonucleic acid, a novel ribosome component in the chloroplasts of flowering plants. Biochem J. 1979 Dec 1;183(3):605–613. doi: 10.1042/bj1830605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burkard G., Eclancher B., Weil J. H. Presence of N-formyl-methionyl-transfer RNA in bean chloroplasts. FEBS Lett. 1969 Aug;4(4):285–287. doi: 10.1016/0014-5793(69)80257-7. [DOI] [PubMed] [Google Scholar]
  6. Corry M. J., Payne P. I., Dyer T. A. A sequence analysis of 5 S rRNA from the blue-green alga Oscillatoria tenuis and a comparison of blue-green alga 5 S rRNA with those of bacterial and eukaryotic origin. FEBS Lett. 1974 Sep 15;46(1):67–70. doi: 10.1016/0014-5793(74)80336-4. [DOI] [PubMed] [Google Scholar]
  7. Corry M. J., Payne P. I., Dyer T. A. The nucleotide sequence of 5 S rRNA from the blue-green alga Anacystis nidulans. FEBS Lett. 1974 Sep 15;46(1):63–66. doi: 10.1016/0014-5793(74)80335-2. [DOI] [PubMed] [Google Scholar]
  8. Dyer T. A., Leech R. M. Chloroplast and cytoplasmic low-molecular-weight ribonucleic acid components of the leaf of Vicia faba L. Biochem J. 1968 Feb;106(3):689–698. doi: 10.1042/bj1060689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Erdmann V. A. Collection of published 5S and 5.8S ribosomal RNA sequences. Nucleic Acids Res. 1978 Jan;5(1):r1–r13. [PMC free article] [PubMed] [Google Scholar]
  10. Erdmann V. A. Structure and function of 5S and 5.8 S RNA. Prog Nucleic Acid Res Mol Biol. 1976;18:45–90. [PubMed] [Google Scholar]
  11. Falvey A. K., Staehelin T. Structure and function of mammalian ribosomes. II. Exchange of ribosomal subunits at various stages of in vitro polypeptide synthesis. J Mol Biol. 1970 Oct 14;53(1):21–34. doi: 10.1016/0022-2836(70)90043-4. [DOI] [PubMed] [Google Scholar]
  12. Fox G. E., Woese C. R. 5S RNA secondary structure. Nature. 1975 Aug 7;256(5517):505–507. doi: 10.1038/256505a0. [DOI] [PubMed] [Google Scholar]
  13. Fox G. E., Woese C. R. The architecture of 5S rRNA and its relation to function. J Mol Evol. 1975 Oct 3;6(1):61–76. doi: 10.1007/BF01732674. [DOI] [PubMed] [Google Scholar]
  14. Ginsburg D., Steitz J. A. The 30 S ribosomal precursor RNA from Escherichia coli. A primary transcript containing 23 S, 16 S, and 5 S sequences. J Biol Chem. 1975 Jul 25;250(14):5647–5654. [PubMed] [Google Scholar]
  15. Hastings J. R., Kirby K. S. The nucleic acids of Drosophila melanogaster. Biochem J. 1966 Aug;100(2):532–539. doi: 10.1042/bj1000532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hori H. Evolution of 5sRNA. J Mol Evol. 1975 Dec 31;7(1):75–86. doi: 10.1007/BF01732181. [DOI] [PubMed] [Google Scholar]
  17. Leis J. P., Keller E. B. Protein Chain-Initiating Methionine tRNAs in Chloroplasts and Cytoplasm of Wheat Leaves. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1593–1599. doi: 10.1073/pnas.67.3.1593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Loening U. E., Ingle J. Diversity of RNA components in green plant tissues. Nature. 1967 Jul 22;215(5099):363–367. doi: 10.1038/215363a0. [DOI] [PubMed] [Google Scholar]
  19. Loening U. E. The determination of the molecular weight of ribonucleic acid by polyacrylamide-gel electrophresis. The effects of changes in conformation. Biochem J. 1969 Jun;113(1):131–138. doi: 10.1042/bj1130131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Min Jou W., Fiers W. Sequence determination of Gp-rich oligonucleotides by means of the Kethoxal modification. FEBS Lett. 1976 Jul 1;66(1):77–81. doi: 10.1016/0014-5793(76)80589-3. [DOI] [PubMed] [Google Scholar]
  21. Payne P. I., Corry M. J., Dyer T. A. Nucleotide sequence analysis of the cytoplasmic 5S ribosomal ribonucleic acid from five species of flowering plants. Biochem J. 1973 Dec;135(4):845–851. doi: 10.1042/bj1350845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Payne P. I., Dyer T. A. Characterization of cytoplasmic and chloroplast 5S ribosomal ribonucleic acid from broad-bean leaves. Biochem J. 1971 Aug;124(1):83–89. doi: 10.1042/bj1240083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Payne P. I., Dyer T. A. Evidence for the nucleotide sequence of 5-S rRNA from the flowering plant Secale cereale (Rye). Eur J Biochem. 1976 Dec;71(1):33–38. doi: 10.1111/j.1432-1033.1976.tb11086.x. [DOI] [PubMed] [Google Scholar]
  24. Payne P. I., Dyer T. A. Phytochrome and temperature relations in Lactuca sativa L. Grand Rapids seed germination after thermo-dormancy. Nat New Biol. 1972 Feb 2;235(57):145–147. [PubMed] [Google Scholar]
  25. Rubin G. M. Preparation of RNA and ribosomes from yeast. Methods Cell Biol. 1975;12:45–64. doi: 10.1016/s0091-679x(08)60951-6. [DOI] [PubMed] [Google Scholar]
  26. Thomas J. R., Tewari K. K. Conservation of 70S ribosomal RNA genes in the chloroplast DNAs of higher plants. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3147–3151. doi: 10.1073/pnas.71.8.3147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Volckaert G., Jou W. M., Fiers W. Analysis of 32P-labeled bacteriophage MS2 RNA by a mini-fingerprinting procedure. Anal Biochem. 1976 May 7;72:433–446. doi: 10.1016/0003-2697(76)90551-0. [DOI] [PubMed] [Google Scholar]
  28. Whitfeld P. R., Leaver C. J., Bottomley W., Atchison B. Low-molecular-weight (4.5S) ribonucleic acid in higher-plant chloroplast ribosomes. Biochem J. 1978 Dec 1;175(3):1103–1112. doi: 10.1042/bj1751103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wrede P., Erdmann V. A. Escherichia coli 5S RNA binding proteins L18 and L25 interact with 5.8S RNA but not with 5S RNA from yeast ribosomes. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2706–2709. doi: 10.1073/pnas.74.7.2706. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES