Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Dec 1;183(3):711–720. doi: 10.1042/bj1830711

Structure of heparan sulphate oligosaccharides and their degradation by exo-enzymes.

A Linker
PMCID: PMC1161653  PMID: 161508

Abstract

Oligosaccharides obtained from heparan sulphate by nitrous acid degradation were shown to be degraded sequentially by beta-D-glucuronidase or alpha-L-iduronidase followed by alpha D-N-acetylglucosaminidase. Structural analysis of the tetrasaccharide fraction showed the following. (1) N-Acetylglucosamine is preceded by a non-sulphated uronic acid residue that can be either D-glucuronic of L-iduronic acid, but followed by a glucuronic acid residue. (2) The N-acetylglucosamine in the major fraction is sulphated. (3) Very few if any of the uronic acid residues are sulphated (4). The results indicate that the area of the heparan sulphate chain where disaccharides containing N-acetylglucosamine and N-sulphated glucosamine residues alternate is higher in sulphate content than expected and that the sulphate groups are mainly located on the hexosamine units.

Full text

PDF
711

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach G., Geiger B. Human placental N-acetyl-beta-D-hexosaminidase isozymes. Activity toward native hyaluronic acid. Arch Biochem Biophys. 1978 Jul;189(1):37–43. doi: 10.1016/0003-9861(78)90111-x. [DOI] [PubMed] [Google Scholar]
  2. Basner R., Kresse H., von Figura K. N-Acetylglucosamine-6-sulfate sulfatase from human urine. J Biol Chem. 1979 Feb 25;254(4):1151–1158. [PubMed] [Google Scholar]
  3. Cifonelli J. A., King J. A. Structural characteristics of heparan sulfates with varying sulfate contents. Biochemistry. 1977 May 17;16(10):2137–2141. doi: 10.1021/bi00629a014. [DOI] [PubMed] [Google Scholar]
  4. Cifonelli J. A., King J. The isolation and properties of heparitin sulfate from human umbilical cord tissues. Biochim Biophys Acta. 1970 Aug 14;215(2):273–279. doi: 10.1016/0304-4165(70)90025-5. [DOI] [PubMed] [Google Scholar]
  5. Hall C. W., Liebaers I., Di Natale P., Neufeld E. F. Enzymic diagnosis of the genetic mucopolysaccharide storage disorders. Methods Enzymol. 1978;50:439–456. doi: 10.1016/0076-6879(78)50048-7. [DOI] [PubMed] [Google Scholar]
  6. Hovingh P., Linker A. Specificity of flavobacterial glycuronidases acting on disaccharides derived from glycosaminoglycans. Biochem J. 1977 Aug 1;165(2):287–293. doi: 10.1042/bj1650287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hovingh P., Linker A. The disaccharide repeating-units of heparan sulfate. Carbohydr Res. 1974 Oct;37(1):181–192. doi: 10.1016/s0008-6215(00)87073-1. [DOI] [PubMed] [Google Scholar]
  8. Hök M., Lindahl U., Iverius P. H. Distribution of sulphate and iduronic acid residues in heparin and heparan sulphate. Biochem J. 1974 Jan;137(1):33–43. doi: 10.1042/bj1370033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hök M., Wasteson A., Oldberg A. A heparan sulfate-degrading endoglycosidase from rat liver tissue. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1422–1428. doi: 10.1016/0006-291x(75)90185-0. [DOI] [PubMed] [Google Scholar]
  10. Jacobsson I., Hök M., Pettersson I., Lindahl U., Larm O., Wirén E., von Figura K. Identification of N-sulphated disaccharide units in heparin-like polysaccharides. Biochem J. 1979 Apr 1;179(1):77–87. doi: 10.1042/bj1790077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kanwar Y. S., Farquhar M. G. Presence of heparan sulfate in the glomerular basement membrane. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1303–1307. doi: 10.1073/pnas.76.3.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klein U., Kresse H., von Figura K. Sanfilippo syndrome type C: deficiency of acetyl-CoA:alpha-glucosaminide N-acetyltransferase in skin fibroblasts. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5185–5189. doi: 10.1073/pnas.75.10.5185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klein U., Von Figura K. Partial purification and characterization of heparan sulfate specific endoglucuronidase. Biochem Biophys Res Commun. 1976 Dec 6;73(3):569–576. doi: 10.1016/0006-291x(76)90848-2. [DOI] [PubMed] [Google Scholar]
  14. Knecht J., Cifonelli J. A., Dorfman A. Structural studies on heparitin sulfate of normal and Hurler tissues. J Biol Chem. 1967 Oct 25;242(20):4652–4661. [PubMed] [Google Scholar]
  15. Kraemer P. M. Heparan sulfates of cultured cells. I. Membrane-associated and cell-sap species in Chinese hamster cells. Biochemistry. 1971 Apr 13;10(8):1437–1445. doi: 10.1021/bi00784a026. [DOI] [PubMed] [Google Scholar]
  16. LINKER A., MEYER K., WEISSMANN B. Enzumatic formation of monosaccharides from hyaluronate. J Biol Chem. 1955 Mar;213(1):237–248. [PubMed] [Google Scholar]
  17. Lim T. W., Leder I. G., Bach G., Neufeld E. F. An assay for iduronate sulfatase (Hunter corrective factor). Carbohydr Res. 1974 Oct;37(1):103–109. doi: 10.1016/s0008-6215(00)87067-6. [DOI] [PubMed] [Google Scholar]
  18. Linker A., Hovingh P. Structural studies of heparitin sulfates. Biochim Biophys Acta. 1975 Apr 7;385(2):324–333. doi: 10.1016/0304-4165(75)90360-8. [DOI] [PubMed] [Google Scholar]
  19. Linker A., Hovingh P. The heparitin sulfates (heparan sulfates). Carbohydr Res. 1973 Jul;29(1):41–62. doi: 10.1016/s0008-6215(00)82069-8. [DOI] [PubMed] [Google Scholar]
  20. Linker A. The uronidic linkages in heparitin sulfate. Connect Tissue Res. 1975;3(1):33–37. doi: 10.3109/03008207509152339. [DOI] [PubMed] [Google Scholar]
  21. Mersmann G., von Figura K., Buddecke E. Physical properties and biological activities of two forms of alpha-N-acetylglucosaminidase from bovine spleen. Biochim Biophys Acta. 1974 Sep 11;364(1):88–96. doi: 10.1016/0005-2744(74)90135-1. [DOI] [PubMed] [Google Scholar]
  22. Rollins B. J., Culp L. A. Glycosaminoglycans in the substrate adhesion sites of normal and virus-transformed murine cells. Biochemistry. 1979 Jan 9;18(1):141–148. doi: 10.1021/bi00568a022. [DOI] [PubMed] [Google Scholar]
  23. Rosenberg R. D., Lam L. Correlation between structure and function of heparin. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1218–1222. doi: 10.1073/pnas.76.3.1218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Spiro M. J. Uronic acid analysis by automated anion exchange chromatography. Anal Biochem. 1977 Oct;82(2):348–352. doi: 10.1016/0003-2697(77)90171-3. [DOI] [PubMed] [Google Scholar]
  25. Weissman B., Cashman D. C., Santiago R. Concerted action of beta-glucuronidase and beta-acetylglucosaminidase on hyaluronodextrins. Connect Tissue Res. 1975;3(1):7–15. doi: 10.3109/03008207509152336. [DOI] [PubMed] [Google Scholar]
  26. Weissmann B., Rowin G., Marshall J., Friederici D. Mammalian alpha-acetylglucosaminidase. Enzymic properties, tissue distribution, and intracellular localization. Biochemistry. 1967 Jan;6(1):207–214. doi: 10.1021/bi00853a033. [DOI] [PubMed] [Google Scholar]
  27. Weissmann B., Santiago R. -L-iduronidase in lysosomal extracts. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1430–1433. doi: 10.1016/s0006-291x(72)80136-0. [DOI] [PubMed] [Google Scholar]
  28. Winterbourne D. J., Mora P. T. Altered metabolism of heparan sulfate in simian virus 40 transformed cloned mouse cells. J Biol Chem. 1978 Jul 25;253(14):5109–5120. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES