Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Nov 15;184(2):303–311. doi: 10.1042/bj1840303

The stimulus--secretion coupling 4-methyl-2-oxopentanoate-induced insulin release.

J C Hutton, A Sener, W J Malaisse
PMCID: PMC1161765  PMID: 43144

Abstract

1. Pancreatic islet insulin secretion and 45Ca uptake showed similar responses to variation in the extracellular concentration of 4-methyl-2-oxopentanoate with a threshold at 4 mM and a maximal response at a 25 mM concentration. 2. Islet respiration, acetoacetate production and rates of substrate utilization, oxidation and amination all changed as a simple hyperbolic function of 4-methyl-2-oxopentanoate concentration and exhibited a maximal response at 25 mM. 3. The responses of ATP content, [ATP]/[ADP] ratio, adenylate energy charge and [NADH]/[NAD+] ratio were also hyperbolic in nature but were maximally elevated at lower concentrations of the secretagogue. The islet [NADPH]/[NADP+] ratio, however, was tightly correlated with parameters of metabolic flux, 45Ca uptake and insulin release. 4. NH4+ and menadione, agents that promote a more oxidized state in islet NADP, did not affect islet ATP content or the rates of [U-14C]4-methyl-2-oxopentanoate oxidation or amination, but markedly inhibited islet 45Ca uptake and insulin release. 5. It is proposed that changes in the redox state of NADP and Ca transport may serve as mediators in the stimulus-secretion coupling mechanism of insulin release induced by 4-methyl-2-oxopentanoate.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberty R. A. Standard Gibbs free energy, enthalpy, and entropy changes as a function of pH and pMg for several reactions involving adenosine phosphates. J Biol Chem. 1969 Jun 25;244(12):3290–3302. [PubMed] [Google Scholar]
  2. Ammon H. P., Akhtar M. S., Niklas H., Hegner D. Inhibition of p-chloromercuribenzoate- and glucose-induced insulin release in vitro by methylene blue, diamide, and tert-butyl hydroperoxide. Mol Pharmacol. 1977 Jul;13(4):598–605. [PubMed] [Google Scholar]
  3. Cooper R. H., Randle P. J., Denton R. M. Stimulation of phosphorylation and inactivation of pyruvate dehydrogenase by physiological inhibitors of the pyruvate dehydrogenase reaction. Nature. 1975 Oct 30;257(5529):808–809. doi: 10.1038/257808a0. [DOI] [PubMed] [Google Scholar]
  4. Deery D. J., Taylor K. W. Effect of phenylpyruvate on enzymes involved in fatty acid synthesis in rat brain. Biochem J. 1973 Jun;134(2):557–563. doi: 10.1042/bj1340557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gunnarsson R., Berne C., Hellerström C. Cytotoxic effects of streptozotocin and N-nitrosomethylurea on the pancreatic B cells with special regard to the role of nicotinamide-adenine dinucleotide. Biochem J. 1974 Jun;140(3):487–494. doi: 10.1042/bj1400487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hutton J. C., Sener A., Malaisse W. J. The metabolism of 4-methyl-2-oxopentanoate in rat pancreatic islets. Biochem J. 1979 Nov 15;184(2):291–301. doi: 10.1042/bj1840291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Joost H. G., Panten U., Ishida H., Poser W., Hasselblatt A. Effects of bicyclic leucine analogues on insulin release from the perfused rat pancreas and fluorescence of reduced pyridine nucleotides from perifused pancreatic islets. Life Sci. 1975 Jan 15;16(2):247–254. doi: 10.1016/0024-3205(75)90022-3. [DOI] [PubMed] [Google Scholar]
  8. Lacy P. E., Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967 Jan;16(1):35–39. doi: 10.2337/diab.16.1.35. [DOI] [PubMed] [Google Scholar]
  9. Malaisse-Lagae F., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. 3. Uptake of 45 calcium by isolated islets of Langerhans. Endocrinology. 1971 Jan;88(1):72–80. doi: 10.1210/endo-88-1-72. [DOI] [PubMed] [Google Scholar]
  10. Malaisse W. J., Brisson G., Malaisse-Lagae F. The stimulus-secretion coupling of glucose-induced insulin release. I. Interaction of epinephrine and alkaline earth cations. J Lab Clin Med. 1970 Dec;76(6):895–902. [PubMed] [Google Scholar]
  11. Malaisse W. J., Hutton J. C., Kawazu S., Herchuelz A., Valverde I., Sener A. The stimulus-secretion coupling of glucose-induced insulin release. XXXV. The links between metabolic and cationic events. Diabetologia. 1979 May;16(5):331–341. doi: 10.1007/BF01223623. [DOI] [PubMed] [Google Scholar]
  12. Malaisse W. J., Hutton J. C., Kawazu S., Sener A. The stimulus-secretion coupling of glucose-induced insulin release. Metabolic effects of menadione in isolated islets. Eur J Biochem. 1978 Jun 1;87(1):121–130. doi: 10.1111/j.1432-1033.1978.tb12357.x. [DOI] [PubMed] [Google Scholar]
  13. Malaisse W. J., Hutton J. C., Sener A., Levy J., Herchuelz A., Devis G., Somers G. Calcium antagonists and islet function: VII. Effect of calcium deprivation. J Membr Biol. 1978 Jan 18;38(3):193–208. doi: 10.1007/BF01871922. [DOI] [PubMed] [Google Scholar]
  14. Panten U., Christians J., von Kriegstein E., Poser W., Hasselblatt A. Effect of carbohydrates upon fluorescence of reduced pyridine nucleotides from perifused isolated pancreatic islets. Diabetologia. 1973 Dec;9(6):477–482. doi: 10.1007/BF00461692. [DOI] [PubMed] [Google Scholar]
  15. Panten U., Christians J., von Kriegstein E., Poser W., Hasselblatt A. Studies on the mechanism of L-leucine-and alpha-ketoisocaproic acid-induced insulin release from perifused isolated pancreatic islets. Diabetologia. 1974 Apr;10(2):149–154. doi: 10.1007/BF01219672. [DOI] [PubMed] [Google Scholar]
  16. Panten U. Effects of alpha-ketomonocarboxylic acids upon insulin secretion and metabolism of isolated pancreatic islets. Naunyn Schmiedebergs Arch Pharmacol. 1975;291(4):405–420. doi: 10.1007/BF00501798. [DOI] [PubMed] [Google Scholar]
  17. Pettit F. H., Pelley J. W., Reed L. J. Regulation of pyruvate dehydrogenase kinase and phosphatase by acetyl-CoA/CoA and NADH/NAD ratios. Biochem Biophys Res Commun. 1975 Jul 22;65(2):575–582. doi: 10.1016/s0006-291x(75)80185-9. [DOI] [PubMed] [Google Scholar]
  18. Sener A., Hutton J. C., Kawazu S., Boschero A. C., Somers G., Devis G., Herchuelz A., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. Metabolic and functional effects of NH4+ in rat islets. J Clin Invest. 1978 Oct;62(4):868–878. doi: 10.1172/JCI109199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Smith C. M., Bryla J., Williamson J. R. Regulation of mitochondrial alpha-ketoglutarate metabolism by product inhibition at alpha-ketoglutarate dehydrogenase. J Biol Chem. 1974 Mar 10;249(5):1497–1505. [PubMed] [Google Scholar]
  20. Stanley P. E., Williams S. G. Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal Biochem. 1969 Jun;29(3):381–392. doi: 10.1016/0003-2697(69)90323-6. [DOI] [PubMed] [Google Scholar]
  21. Trus M. D., Hintz C. S., Weinstein J. B., Williams A. D., Pagliara A. S., Matschinsky F. M. Effects of glucose and acetylcholine on islet tissue NADH and insulin release. Life Sci. 1978 Mar;22(9):809–816. doi: 10.1016/0024-3205(78)90251-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES