Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Nov 15;184(2):379–389. doi: 10.1042/bj1840379

The reaction of cytochrome omicron in Escherichia coli with oxygen. Low-temperature kinetic and spectral studies.

R K Poole, A J Waring, B Chance
PMCID: PMC1161773  PMID: 393255

Abstract

1. The reactions of cytochrome omicron in intact cells of aerobically grown Escherichia coli with O2 and CO have been studied at low temperature. 2. Flash photolysis of CO-liganded cells in the presence of O2 and at temperatures between -79 and -102 degrees C results in the oxidation of kinetically heterogeneous beta-type cytochromes (including cytochrome omicron), but not of cytochrome d. 3. The reaction of reduced cytochrome omicron with O2 involves O2 binding to give intermediate(s) with spectral characteristics similar to that of the reduced oxidase-CO complex. Observation in the alpha-region suggests that unexplained ligand dissociation accompanies the initial O2 binding. 4. At temperatures below -98 degrees C, an 'end point' in the reaction is reached; further reaction and oxidation of cytochrome omicron occurs on raising the temperature. 5. There is a linear relationship between the rate of formation of the oxygen compound and the O2 concentration up to 0.5 mM. The second-order constant for its formation (k+1) is 0.91 M-1.S-1 at -101 degrees C. The reaction is not readily reversible, the value of k-1 being 1.4 X 10(-5) S-1 and the kd 1.5 X 10(-5) M. 6. The energy of activation for this reaction at low temperatures is 29.9kJ (7.1 kcal)/mol. 7. The reaction with O2 is distinguished from that with CO by the markedly lower velocity and high photolytic reversibility of the latter. 8. Comparisons are drawn between the intermediate(s) in the O2 reaction of cytochrome omicron in E. coli and those identified in other bacteria and in the reaction of cytochrome aa3 with O2.

Full text

PDF
379

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberding N., Austin R. H., Chan S. S., Eisenstein L., Frauenfelder H., Good D., Kaufmann K., Marden M., Nordlund T. M., Reinisch L. Fast reactions in carbon monoxide binding to heme proteins. Biophys J. 1978 Oct;24(1):319–334. doi: 10.1016/S0006-3495(78)85380-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Austin R. H., Beeson K. W., Eisenstein L., Frauenfelder H., Gunsalus I. C. Dynamics of ligand binding to myoglobin. Biochemistry. 1975 Dec 2;14(24):5355–5373. doi: 10.1021/bi00695a021. [DOI] [PubMed] [Google Scholar]
  3. CASTOR L. N., CHANCE B. Photochemical determinations of the oxidases of bacteria. J Biol Chem. 1959 Jun;234(6):1587–1592. [PubMed] [Google Scholar]
  4. Chance B., Graham N. A rapid scanning dual wavelength spectrophotometer. Rev Sci Instrum. 1971 Jul;42(7):941–945. doi: 10.1063/1.1685311. [DOI] [PubMed] [Google Scholar]
  5. Chance B., Graham N., Legallais V. Low temperature trapping method for cytochrome oxidase oxygen intermediates. Anal Biochem. 1975 Aug;67(2):552–579. doi: 10.1016/0003-2697(75)90331-0. [DOI] [PubMed] [Google Scholar]
  6. Chance B., Legallais V., Sorge J., Graham N. A versatile time-sharing multichannel spectrophotometer, reflectometer, and fluorometer. Anal Biochem. 1975 Jun;66(2):498–514. doi: 10.1016/0003-2697(75)90617-x. [DOI] [PubMed] [Google Scholar]
  7. Chance B., Saronio C., Leigh J. S., Jr Functional intermediates in the reaction of membrane-bound cytochrome oxidase with oxygen. J Biol Chem. 1975 Dec 25;250(24):9226–9237. [PubMed] [Google Scholar]
  8. Chance B., Saronio C., Leigh J. S., Jr, Ingledew W. J., King T. E. Low-temperature kinetics of the reaction of oxygen and solubilized cytochrome oxidase. Biochem J. 1978 Jun 1;171(3):787–798. doi: 10.1042/bj1710787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Downie J. A., Cox G. B. Sequence of b cytochromes relative to ubiquinone in the electron transport chain of Escherichia coli. J Bacteriol. 1978 Feb;133(2):477–484. doi: 10.1128/jb.133.2.477-484.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GIBSON Q. H., AINSWORTH S. Photosensitivity of haem compounds. Nature. 1957 Dec 21;180(4599):1416–1417. doi: 10.1038/1801416b0. [DOI] [PubMed] [Google Scholar]
  11. Greenwood C., Barber D., Parr S. R., Antonini E., Brunori M., Colosimo A. The reaction of Pseudomonas aeruginosa cytochrome c-551 oxidase with oxygen. Biochem J. 1978 Jul 1;173(1):11–17. doi: 10.1042/bj1730011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haddock B. A., Downie J. A., Garland P. B. Kinetic characterization of the membrane-bound cytochromes of Escherichia coli grown under a variety of conditions by using a stopped-flow dual-wavelength spectrophotometer. Biochem J. 1976 Feb 15;154(2):285–294. doi: 10.1042/bj1540285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haddock B. A., Jones C. W. Bacterial respiration. Bacteriol Rev. 1977 Mar;41(1):47–99. doi: 10.1128/br.41.1.47-99.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liu C. Y., Webster D. A. Spectral characteristics and interconversions of the reduced oxidized, and oxygenated forms of purified cytochrome o. J Biol Chem. 1974 Jul 10;249(13):4261–4266. [PubMed] [Google Scholar]
  15. Parr S. R., Wilson M. T., Greenwood C. The reaction of Pseudomonas aeruginosa cytochrome c oxidase with carbon monoxide. Biochem J. 1975 Oct;151(1):51–59. doi: 10.1042/bj1510051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pirt S. J. A kinetic study of the mode of growth of surface colonies of bacteria and fungi. J Gen Microbiol. 1967 May;47(2):181–197. doi: 10.1099/00221287-47-2-181. [DOI] [PubMed] [Google Scholar]
  17. Poole R. K., Haddock B. A. Effects of sulphate-limited growth in continuous culture on the electron-transport chain and energy conservation in Escherichia coli K12. Biochem J. 1975 Dec;152(3):537–546. doi: 10.1042/bj1520537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Poole R. K., Haddock B. A. Energy-linked reduction of nicotinamide--adenine dinucleotide in membranes derived from normal and various respiratory-deficient mutant strains of Escherichia coli K12. Biochem J. 1974 Oct;144(1):77–85. doi: 10.1042/bj1440077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pudek M. R., Bragg P. D. Inhibition by cyanide of the respiratory chain oxidases of Escherichia coli. Arch Biochem Biophys. 1974 Oct;164(2):682–693. doi: 10.1016/0003-9861(74)90081-2. [DOI] [PubMed] [Google Scholar]
  20. Pudek M. R., Bragg P. D. Trapping of an intermediate in the oxidation-reduction cycle of cytochrome d in Escherichia coli. FEBS Lett. 1976 Mar 1;62(3):330–333. doi: 10.1016/0014-5793(76)80087-7. [DOI] [PubMed] [Google Scholar]
  21. Reid G. A., Ingledew W. J. Characterization and phenotypic control of the cytochrome content of Escherichia coli. Biochem J. 1979 Aug 15;182(2):465–472. doi: 10.1042/bj1820465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sharrock M., Yonetani T. Low-temperature flash photolysis studies of cytochrome oxidase and its environment. Biochim Biophys Acta. 1977 Dec 23;462(3):718–730. doi: 10.1016/0005-2728(77)90113-x. [DOI] [PubMed] [Google Scholar]
  23. Shimada H., Orii Y. Oxidation-reduction behavior of the heme c and heme d moieties of Pseudomonas aeruginosa nitrite reductase and the formation of an oxygenated intermediate at heme d1. J Biochem. 1976 Jul;80(1):135–140. doi: 10.1093/oxfordjournals.jbchem.a131245. [DOI] [PubMed] [Google Scholar]
  24. Tyree B., Webster D. A. Electron-accepting properties of cytochrome o purified from Vitreoscilla. J Biol Chem. 1978 Nov 10;253(21):7635–7637. [PubMed] [Google Scholar]
  25. Tyree B., Webster D. A. Intermediates in the reaction of reduced cytochrome o (Vitreoscilla) with oxygen. J Biol Chem. 1979 Jan 10;254(1):176–179. [PubMed] [Google Scholar]
  26. Tyree B., Webster D. A. The binding of cyanide and carbon monoxide to cytochrome o purified from Vitreoscilla. Evidence for subunit interaction in the reduced protein. J Biol Chem. 1978 Oct 10;253(19):6988–6991. [PubMed] [Google Scholar]
  27. Webster D. A., Liu C. Y. Reduced nicotinamide adenine dinucleotide cytochrome o reductase associated with cytochrome o purified from Vitreoscilla. Evidence for an intermediate oxygenated form of cytochrome o. J Biol Chem. 1974 Jul 10;249(13):4257–4260. [PubMed] [Google Scholar]
  28. Webster D. A., Orii Y. Oxygenated Cytochrome o. An active intermediate observed in whole cells of Vitreoscilla. J Biol Chem. 1977 Mar 25;252(6):1834–1836. [PubMed] [Google Scholar]
  29. Webster D. A., Orii Y. Physiological role of oxygenated cytochrome o: observations on whole-cell suspensions of Vitreoscilla. J Bacteriol. 1978 Jul;135(1):62–67. doi: 10.1128/jb.135.1.62-67.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wharton D. C., Gibson Q. H. Cytochrome oxidase from Pseudomonas aeruginosa. IV. Reaction with oxygen and carbon monoxide. Biochim Biophys Acta. 1976 Jun 8;430(3):445–453. doi: 10.1016/0005-2728(76)90020-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES