Abstract
1. Redox titrations are reported of the metal centres in Japanese-lacquer-tree (Rhus vernicifera) laccase with ferrocyanide. 2. The redox potential of Type 1 Cu was found to increase with ferrocyanide concentration up to a limiting value similar to that for the Type 1 Cu in Type 2 Cu-depleted enzyme (which is independent of ferrocyanide concentration). 3. The redox potential of the two-electron acceptor (Type 3 Cu) is also independent of ferrocyanide concentration in Type 2 Cu-depleted enzyme and lower than values reported for the native enzyme. 4. The two-electron acceptor is present in the oxidized state in the Type 2 Cu-depleted enzyme, though the latter lacks the 330 nm absorption band. 5. The redox potential of Type 2 Cu also depends on ferrocyanide concentration, at least in the presence of azide. 6. The redox potentials are affected by freezing the solutions and/or addition of azide, the latter binding to Type 2 Cu with affinity dependent on the redox state of the two-electron acceptor.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Desideri A., Morpurgo L., Rotilio G., Mondovì B. Stereochemistry of anion complexes of type 2 Cu(II) in Rhus vernicifera laccase. Analogy with superoxide dismutase and Cu(II) carbonic anhydrase. FEBS Lett. 1979 Feb 15;98(2):339–341. doi: 10.1016/0014-5793(79)80212-4. [DOI] [PubMed] [Google Scholar]
- Haffner P. H., Coleman J. E. Structure of the active site of carbonic anhydrase as determined by electron spin resonance. J Biol Chem. 1975 Feb 10;250(3):996–1005. [PubMed] [Google Scholar]
- Holwerda R. A., Gray H. B. Mechanistic studies of the reduction of Rhus vernicifera laccase by hydroquinone. J Am Chem Soc. 1974 Sep 18;96(19):6008–6022. doi: 10.1021/ja00826a009. [DOI] [PubMed] [Google Scholar]
- Holwerda R. A., Wherland S., Gray H. B. Electron transfer reactions of copper proteins. Annu Rev Biophys Bioeng. 1976;5:363–396. doi: 10.1146/annurev.bb.05.060176.002051. [DOI] [PubMed] [Google Scholar]
- Morpurgo L., Graziani M. T., Finazzi-Agrò A., Rotilio G., Mondovì B. Optical properties of japanese-lacquer-tree (Rhus vernicifera) laccase depleted of type 2 copper(II). Involvement of type-2 copper(II) in the 330nm chromophore. Biochem J. 1980 May 1;187(2):361–366. doi: 10.1042/bj1870361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NAKAMURA T. Purification and physico-chemical properties of laccase. Biochim Biophys Acta. 1958 Oct;30(1):44–52. doi: 10.1016/0006-3002(58)90239-7. [DOI] [PubMed] [Google Scholar]
- O'Reilly J. E. Oxidation-reduction potential of the ferro-ferricyanide system in buffer solutions. Biochim Biophys Acta. 1973 Apr 5;292(3):509–515. doi: 10.1016/0005-2728(73)90001-7. [DOI] [PubMed] [Google Scholar]
- Reinhammar B. R. Oxidation-reduction potentials of the electron acceptors in laccases and stellacyanin. Biochim Biophys Acta. 1972 Aug 17;275(2):245–259. doi: 10.1016/0005-2728(72)90045-x. [DOI] [PubMed] [Google Scholar]
- Reinhammar B. R., Vänngård T. I. The electron-accepting sites in Rhus vernicifera laccase as studied by anaerobic oxidation-reduction titrations. Eur J Biochem. 1971 Feb;18(4):463–468. doi: 10.1111/j.1432-1033.1971.tb01264.x. [DOI] [PubMed] [Google Scholar]
- Solomon E. I., Dooley D. M., Wang R. H., Gray H. B., Credonio M., Mogno F., Romani G. L. Letter: Susceptibility studies of laccase and oxyhemocyanin using an ultrasensitive magnetometer. Antiferromagnetic behavior of the type 3 copper in Rhus laccase. J Am Chem Soc. 1976 Feb 18;98(4):1029–1031. doi: 10.1021/ja00420a035. [DOI] [PubMed] [Google Scholar]
