Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Dec 15;184(3):581–588. doi: 10.1042/bj1840581

The tricarboxylic acid cycle in Dictyostelium discoideum. Metabolite concentrations, oxygen uptake and 14c-labelled amino acid labelling patterns.

P J Kelly, J K Kelleher, B E Wright
PMCID: PMC1161841  PMID: 540050

Abstract

Some aspects of tricarboxylic acid-cycle activity during differentiation and aging in Dictyostelium discoideum were examined. The concentrations of glutamate, aspartate, alanine, citrate, 2-oxoglutarate, succinate, fumarate, malate, oxaloacetate, pyruvate and acetyl-CoA were determined at four stages over the course of differentiation. The rate of O2 utilization was also determined over differentiation. In addition, experiments are described in which the specific radioactivities of citrate, 2-oxoglutarate, succinate, fumarate and malate were determined during a 30 min labelling of cells from the preculmination stage of development with [14C]glutamate, [14C]aspartate or [14C]alanine. A similar experiment was also performed with cells from the aggregation stage of development using [14C]glutamate.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashworth J. M., Duncan D., Rowe A. J. Changes in fine structure during cell differentiation of the cellular slime mould Dictyostelium discoideum. Exp Cell Res. 1969 Nov;58(1):73–78. doi: 10.1016/0014-4827(69)90117-7. [DOI] [PubMed] [Google Scholar]
  2. BALAZS R., HASLAM J. EXCHANGE TRANSAMINATION AND THE METABOLISM OF GLUTAMATE IN BRAIN. Biochem J. 1965 Jan;94:131–141. doi: 10.1042/bj0940131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BRUEHMUELLER M., WRIGHT B. E. Glutamate oxidation in the differentiating slime mold. II. Studies in vitro. Biochim Biophys Acta. 1963 Apr 2;71:50–57. doi: 10.1016/0006-3002(63)90984-3. [DOI] [PubMed] [Google Scholar]
  4. Barravecchio J., Baumann P., Wright B. Cell volume determinations of Dictyostelium discoideum. Appl Microbiol. 1969 Apr;17(4):641–642. doi: 10.1128/am.17.4.641-642.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cleland S. V., Coe E. L. Conversion of aspartic acid to glucose during culmination of Dictyostelium discoideum. Biochim Biophys Acta. 1969 Dec 30;192(3):446–454. doi: 10.1016/0304-4165(69)90393-6. [DOI] [PubMed] [Google Scholar]
  6. Erickson S. K., Ashworth J. M. The mitochondrial electron-transport system of the cellular slime mould Dictyostelium discoideum. Biochem J. 1969 Jul;113(3):567–568. doi: 10.1042/bj1130567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Farnsworth P. A., Loomis W. F. A barrier to diffusion in pseudoplasmodia of Dictyostelium discoideum. Dev Biol. 1974 Nov;41(1):77–83. doi: 10.1016/0012-1606(74)90284-x. [DOI] [PubMed] [Google Scholar]
  8. Firtel R. A., Brackenbruy R. W. Partial characterization of several protein and amino acid metabolizing enzymes in the cellular slime mold Dictyostelium discoideum. Dev Biol. 1972 Mar;27(3):307–321. doi: 10.1016/0012-1606(72)90170-4. [DOI] [PubMed] [Google Scholar]
  9. George R. P., Hohl H. R., Raper K. B. Ultrastructural development of stalk-producing cells in dictyostelium discoideum, a cellular slime mould. J Gen Microbiol. 1972 May;70(3):477–489. doi: 10.1099/00221287-70-3-477. [DOI] [PubMed] [Google Scholar]
  10. Halper L. A., Srere P. A. Interaction between citrate synthase and mitochondrial malate dehydrogenase in the presence of polyethylene glycol. Arch Biochem Biophys. 1977 Dec;184(2):529–534. doi: 10.1016/0003-9861(77)90462-3. [DOI] [PubMed] [Google Scholar]
  11. Kelly P. J., Kelleher J. K., Wright B. E. The tricarboxylic acid cycle in Dictyostelium discoideum. A model of the cycle at preculmination and aggregation. Biochem J. 1979 Dec 15;184(3):589–597. doi: 10.1042/bj1840589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koch-Schmidt A. C., Mattiasson B., Mosbach K. Aspects of microenvironmental compartmentation. An evaluation of the influence of restricted diffusion, exclusion effects, and enzyme proximity on the overall efficiency of the sequential two-enzyme system malate dehydrogenase--citrate synthase in its soluble and immobilized form. Eur J Biochem. 1977 Nov 15;81(1):71–78. doi: 10.1111/j.1432-1033.1977.tb11928.x. [DOI] [PubMed] [Google Scholar]
  13. LIDDEL G. U., WRIGHT B. E. The effect of glucose on respiration of the differentiating slime mold. Dev Biol. 1961 Jun;3:265–276. doi: 10.1016/0012-1606(61)90047-1. [DOI] [PubMed] [Google Scholar]
  14. Langridge W. H., Komuniecki P., DeToma F. J. Isolation and regulatory properties of two glutamate dehydrogenases from the cellular slime mold Dictyostelium discoideum. Arch Biochem Biophys. 1977 Jan 30;178(2):581–587. doi: 10.1016/0003-9861(77)90229-6. [DOI] [PubMed] [Google Scholar]
  15. Parish R. W. Mitochondria and peroxisomes from the cellular slime mould Dictyostelium discoideum. Isolation techniques and urate oxidase association with peroxisomes. Eur J Biochem. 1975 Oct 15;58(2):523–531. doi: 10.1111/j.1432-1033.1975.tb02401.x. [DOI] [PubMed] [Google Scholar]
  16. Pong S. S., Loomis W. F., Jr Enzymes of amino acid metabolism in Dictyostelium discolideum. I. Tyrosine transaminase. J Biol Chem. 1971 Jul 25;246(14):4412–4416. [PubMed] [Google Scholar]
  17. Porter J. S., Wright B. E. Partial purification and characterization of citrate synthase from Dictyostelium discoideum. Arch Biochem Biophys. 1977 May;181(1):155–163. doi: 10.1016/0003-9861(77)90493-3. [DOI] [PubMed] [Google Scholar]
  18. TAKEUCHI I. The correlation of cellular changes with succinic dehydrogenase and cytochrome oxidase activities in the development of the cellular slime molds. Dev Biol. 1960 Aug;2:343–366. doi: 10.1016/0012-1606(60)90021-x. [DOI] [PubMed] [Google Scholar]
  19. WHITE G. J., SUSSMAN M. Metabolism of major cell components during slime mold morphogenesis. Biochim Biophys Acta. 1961 Oct 28;53:285–293. doi: 10.1016/0006-3002(61)90441-3. [DOI] [PubMed] [Google Scholar]
  20. WRIGHT B. E., ANDERSON M. L. Protein and amino acid turnover during differentiation in the slime mold. I. Utilization of endogenous amino acids and proteins. Biochim Biophys Acta. 1960 Sep 9;43:62–66. doi: 10.1016/0006-3002(60)90407-8. [DOI] [PubMed] [Google Scholar]
  21. WRIGHT B. E., BARD S. Glutamate oxidation in the differentiating slime mold. I. Studies in vivo. Biochim Biophys Acta. 1963 Apr 2;71:45–49. doi: 10.1016/0006-3002(63)90983-1. [DOI] [PubMed] [Google Scholar]
  22. Wiener E., Ashworth J. M. The isolation and characterization of lysosomal particles from myxamoebae of the cellular slime mould Dictyostelium discoideum. Biochem J. 1970 Jul;118(3):505–512. doi: 10.1042/bj1180505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wright B. E. On the evolution of differentiation. Arch Mikrobiol. 1967;59(1):335–344. doi: 10.1007/BF00406347. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES