Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Dec 15;184(3):697–700. doi: 10.1042/bj1840697

Effects of glucose on the cytosolic ration of reduced/oxidized nicotinamide-adenine dinucleotide phosphate in rat islets of Langerhans.

S J Ashcroft, M R Christie
PMCID: PMC1161856  PMID: 44196

Abstract

The maximal extractable activity of "malic" enzyme (EC 1.1.1.40) in rat islets of Langerhans was similar to that reported for liver. Thus "malic" enzyme may catalyse a near-equilibrium reaction in the cytosol of islets of Langerhans. Measurements of islet content of malate and pyruvate, the metabolite substrate and product of "malic" enzyme, were therefore used to calculate the cytosolic ration of [NADPH]/[NADP+]. This ratio was higher in islets incubated with 20 mM-glucose than in islets incubated with 2 mM-glucose.

Full text

PDF
695

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ammon H. P., Steinke J. 6-Amnionicotinamide (6-AN) as a diabetogenic agent. In vitro and in vivo studies in the rat. Diabetes. 1972 Mar;21(3):143–148. doi: 10.2337/diab.21.3.143. [DOI] [PubMed] [Google Scholar]
  2. Ashcroft S. J., Capito K., Hedeskov C. J. Time course studies of glucose-induced changes in glucose-6-phosphate and fructose-1,6-diphosphate content of mouse and rat pancreatic islets. Diabetologia. 1973 Aug;9(4):299–302. doi: 10.1007/BF01221858. [DOI] [PubMed] [Google Scholar]
  3. Ashcroft S. J., Randle P. J. Enzymes of glucose metabolism in normal mouse pancreatic islets. Biochem J. 1970 Aug;119(1):5–15. doi: 10.1042/bj1190005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carpenter A. M. Scanning methods: volume quantitation of tissues, cells and subcellular components. J Histochem Cytochem. 1966 Nov;14(11):834–841. doi: 10.1177/14.11.834. [DOI] [PubMed] [Google Scholar]
  5. Coll-Garcia E., Gill J. R. Insulin release by isolated pancreatic islets of the mouse incubated in vitro. Diabetologia. 1969 Apr;5(2):61–66. doi: 10.1007/BF01211999. [DOI] [PubMed] [Google Scholar]
  6. Coore H. G., Denton R. M., Martin B. R., Randle P. J. Regulation of adipose tissue pyruvate dehydrogenase by insulin and other hormones. Biochem J. 1971 Nov;125(1):115–127. doi: 10.1042/bj1250115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deery D. J., Taylor K. W. Effect of phenylpyruvate on enzymes involved in fatty acid synthesis in rat brain. Biochem J. 1973 Jun;134(2):557–563. doi: 10.1042/bj1340557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frenkel R. Bovine heart malic enzyme. I. Isolation and partial purification of a cytoplasmic and a mitochondrial enzyme. J Biol Chem. 1971 May 10;246(9):3069–3074. [PubMed] [Google Scholar]
  9. Malaisse W. J., Hutton J. C., Kawazu S., Herchuelz A., Valverde I., Sener A. The stimulus-secretion coupling of glucose-induced insulin release. XXXV. The links between metabolic and cationic events. Diabetologia. 1979 May;16(5):331–341. doi: 10.1007/BF01223623. [DOI] [PubMed] [Google Scholar]
  10. Malaisse W. J., Hutton J. C., Kawazu S., Sener A. The stimulus-secretion coupling of glucose-induced insulin release. Metabolic effects of menadione in isolated islets. Eur J Biochem. 1978 Jun 1;87(1):121–130. doi: 10.1111/j.1432-1033.1978.tb12357.x. [DOI] [PubMed] [Google Scholar]
  11. Malaisse W. J., Sener A., Boschero A. C., Kawazu S., Devis G., Somers G. The stimulus-secretion coupling of glucose-induced insulin release. Cationic and secretory effects of menadione in the endocrine pancreas. Eur J Biochem. 1978 Jun 1;87(1):111–120. doi: 10.1111/j.1432-1033.1978.tb12356.x. [DOI] [PubMed] [Google Scholar]
  12. Malaisse W. J., Sener A., Herchuelz A., Hutton J. C. Insulin release: the fuel hypothesis. Metabolism. 1979 Apr;28(4):373–386. doi: 10.1016/0026-0495(79)90111-2. [DOI] [PubMed] [Google Scholar]
  13. Panten U., Christians J., von Kriegstein E., Poser W., Hasselblatt A. Effect of carbohydrates upon fluorescence of reduced pyridine nucleotides from perifused isolated pancreatic islets. Diabetologia. 1973 Dec;9(6):477–482. doi: 10.1007/BF00461692. [DOI] [PubMed] [Google Scholar]
  14. Panten U., Christians J., von Kriegstein E., Poser W., Hasselblatt A. Studies on the mechanism of L-leucine-and alpha-ketoisocaproic acid-induced insulin release from perifused isolated pancreatic islets. Diabetologia. 1974 Apr;10(2):149–154. doi: 10.1007/BF01219672. [DOI] [PubMed] [Google Scholar]
  15. RUTTER W. J., LARDY H. A. Purification and properties of pigeon liver malic enzyme. J Biol Chem. 1958 Aug;233(2):374–382. [PubMed] [Google Scholar]
  16. Sener A., Hutton J. C., Kawazu S., Boschero A. C., Somers G., Devis G., Herchuelz A., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. Metabolic and functional effects of NH4+ in rat islets. J Clin Invest. 1978 Oct;62(4):868–878. doi: 10.1172/JCI109199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sener A., Kawazu S., Hutton J. C., Boschero A. C., Devis G., Somers G., Herchuelz A., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. Effect of exogenous pyruvate on islet function. Biochem J. 1978 Oct 15;176(1):217–232. doi: 10.1042/bj1760217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sener A., Malaisse W. J. The metabolism of glucose in pancreatic islets. Diabete Metab. 1978 Jun;4(2):127–133. [PubMed] [Google Scholar]
  19. Sestoft L. Fructose and the dietary therapy of diabetes mellitus. Diabetologia. 1979 Jul;17(1):1–3. doi: 10.1007/BF01222970. [DOI] [PubMed] [Google Scholar]
  20. Siess E. A., Brocks D. G., Wieland O. H. Subcellular distribution of key metabolites in isolated liver cells from fasted rats. FEBS Lett. 1976 Oct 15;69(1):265–271. doi: 10.1016/0014-5793(76)80701-6. [DOI] [PubMed] [Google Scholar]
  21. Tischler M. E., Friedrichs D., Coll K., Williamson J. R. Pyridine nucleotide distributions and enzyme mass action ratios in hepatocytes from fed and starved rats. Arch Biochem Biophys. 1977 Nov;184(1):222–236. doi: 10.1016/0003-9861(77)90346-0. [DOI] [PubMed] [Google Scholar]
  22. Veech R. L., Eggleston L. V., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem J. 1969 Dec;115(4):609–619. doi: 10.1042/bj1150609a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES