Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Jun 15;188(3):657–666. doi: 10.1042/bj1880657

Complex phosphorylation activity in neurosecretosomal membranes isolated from ox neurohypophyses.

M Treiman, S Worm-Petersen, N A Thorn
PMCID: PMC1161946  PMID: 6258559

Abstract

Homogenates of neural lobes of bovine pituitary glands were fractionated on Ficoll gradients to yield neurosecretosomes (nerve endings). The neurosecretosomes were lysed in a hypo-osmotic buffer and the membranes were separated from the soluble components by centrifugation. On incubation with [gamma-32P]ATP this membrane preparation showed an endogenous phosphorylation activity, which was studied by means of gel electrophoresis in the presence of sodium dodecyl sulphate, and subsequent autoradiography. The major part of the [32P]Pi detected on the gel was shown to be incorporated into three protein bands, termed A, B and C, with minimal mol.wts. of 83 000, 59 000 and 47 000 respectively. The phosphorylation of these three proteins was studied under a variety of experimental conditions. The patterns obtained were partly similar. However, important individual differences were noted, particularly with respect to the effects of cyclic AMP, Mg2+ and Ca2+. On the basis of these differences, it is suggested that in this system the phosphorylation activity is heterogenous, bands A, B and C each reflecting the presence of a different site of phosphate turnover. The relationship of bands A, B and C to several of the previously described phosphoproteins in the brain is discussed.

Full text

PDF
657

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso G., Assenmacher I. The smooth endoplasmic reticulum in neurohypophysial axons of the rat: possible involvement in transport, storage and release of neurosecretory material. Cell Tissue Res. 1979 Jul 17;199(3):415–429. doi: 10.1007/BF00236080. [DOI] [PubMed] [Google Scholar]
  2. BROOKS L., OLKEN H. G. AN AUTOMATED FLUOROMETRIC METHOD FOR DETERMINATION OF LACTIC DEHYDROGENASE IN SERUM. Clin Chem. 1965 Aug;11:748–762. [PubMed] [Google Scholar]
  3. Bonne D., Nicolas P., Lauber M., Camier M., Tixier-vidal A., Cohen P. Evidence for an adenylate-cyclase activity in neurosecretory granule membranes from bovine neurohypophysis. Eur J Biochem. 1977 Sep;78(2):337–342. doi: 10.1111/j.1432-1033.1977.tb11745.x. [DOI] [PubMed] [Google Scholar]
  4. De Robertis E., Alberici M., Rodriguez de Lores G., Azcurra J. M. Isolation of different types of synaptic membranes from the brain cortex. Life Sci. 1966 Apr;5(7):577–582. doi: 10.1016/0024-3205(66)90288-8. [DOI] [PubMed] [Google Scholar]
  5. DeLorenzo R. J., Freedman S. D., Yohe W. B., Maurer S. C. Stimulation of Ca2+-dependent neurotransmitter release and presynaptic nerve terminal protein phosphorylation by calmodulin and a calmodulin-like protein isolated from synaptic vesicles. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1838–1842. doi: 10.1073/pnas.76.4.1838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flodgaard H., Torp-Pedersen C. A calcium ion-dependent adenosine triphosphate pyrophosphohydrolase in plasma membrane from rat liver. Demonstration that the adenosine triphosphate analogues adenosine 5'-[betagamma-imido]triphosphate and adenosine 5'-[betagamma-methylene]-triphosphate are substrates for the enzyme. Biochem J. 1978 Jun 1;171(3):817–820. doi: 10.1042/bj1710817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hershkowitz M. Influence of calcium on phosphorylation of a synaptosomal protein. Biochim Biophys Acta. 1978 Aug 17;542(2):274–283. doi: 10.1016/0304-4165(78)90023-5. [DOI] [PubMed] [Google Scholar]
  8. Hofmann F., Beavo J. A., Bechtel P. J., Krebs E. G. Comparison of adenosine 3':5'-monophosphate-dependent protein kinases from rabbit skeletal and bovine heart muscle. J Biol Chem. 1975 Oct 10;250(19):7795–7801. [PubMed] [Google Scholar]
  9. Kelly P. T., Cotman C. W., Largen M. Cyclic AMP-stimulated protein kinases at brain synaptic junctions. J Biol Chem. 1979 Mar 10;254(5):1564–1575. [PubMed] [Google Scholar]
  10. Krueger B. K., Forn J., Greengard P. Depolarization-induced phosphorylation of specific proteins, mediated by calcium ion influx, in rat brain synaptosomes. J Biol Chem. 1977 Apr 25;252(8):2764–2773. [PubMed] [Google Scholar]
  11. Maeno H., Greengard P. Phosphoprotein phosphatases from rat cerebral cortex. Subcellular distribution and characterization. J Biol Chem. 1972 May 25;247(10):3269–3277. [PubMed] [Google Scholar]
  12. Morris J. F., Nordmann J. J., Dyball R. E. Structure-function correlation in mammalian neurosecretion. Int Rev Exp Pathol. 1978;18:1–95. [PubMed] [Google Scholar]
  13. Poirier G., Labrie F., Lemay A., Dupont A., Savary M., Pelletier G. Purification of plasma membrane fractions from the bovine pars intermedia and neurohypophyseal lobe and properties of associated adenylate cyclase. Can J Biochem. 1977 May;55(5):555–566. doi: 10.1139/o77-079. [DOI] [PubMed] [Google Scholar]
  14. Rosen O. M., Erlichman J. Reversible autophosphorylation of a cyclic 3':5'-AMP-dependent protein kinase from bovine cardiac muscle. J Biol Chem. 1975 Oct 10;250(19):7788–7794. [PubMed] [Google Scholar]
  15. Rubin C. S., Rangel-Aldao R., Sarkar D., Erlichman J., Fleischer N. Characterization and comparison of membrane-associated and cytosolic cAMP-dependent protein kinases. Physicochemical and immunological studies on bovine cerebral cortex protein kinases. J Biol Chem. 1979 May 25;254(10):3797–3805. [PubMed] [Google Scholar]
  16. Rubin C. S., Rosen O. M. Protein phosphorylation. Annu Rev Biochem. 1975;44:831–887. doi: 10.1146/annurev.bi.44.070175.004151. [DOI] [PubMed] [Google Scholar]
  17. Russell J. T., Thorn N. A. Isolation and purification of calcium-binding proteins from bovine neurohypophyses. Biochim Biophys Acta. 1977 Apr 25;491(2):398–408. doi: 10.1016/0005-2795(77)90282-3. [DOI] [PubMed] [Google Scholar]
  18. Schulman H., Greengard P. Ca2+-dependent protein phosphorylation system in membranes from various tissues, and its activation by "calcium-dependent regulator". Proc Natl Acad Sci U S A. 1978 Nov;75(11):5432–5436. doi: 10.1073/pnas.75.11.5432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Torp-Pedersen C., Treiman M., Thorn N. A. Subcellular distribution of cyclic AMP phosphodiesterase in the ox neurohypophysis. J Neurochem. 1979 Mar;32(3):1085–1091. doi: 10.1111/j.1471-4159.1979.tb04597.x. [DOI] [PubMed] [Google Scholar]
  20. Treiman M., Pødenphant J., Saermark T., Bock E., Engberg E., Kjeldsen I., Lynderup B. Inhibition by Ca2+ of the adenosine 3' :5'-cyclic monophosphate-stimulated phosphorylation of proteins in membranes from ox neurohypophyseal secretosomes. FEBS Lett. 1979 Jan 1;97(1):147–150. doi: 10.1016/0014-5793(79)80071-x. [DOI] [PubMed] [Google Scholar]
  21. Ueda T., Greengard P. Adenosine 3':5'-monophosphate-regulated phosphoprotein system of neuronal membranes. I. Solubilization, purification, and some properties of an endogenous phosphoprotein. J Biol Chem. 1977 Jul 25;252(14):5155–5163. [PubMed] [Google Scholar]
  22. Uno I., Ueda T., Greengard P. Adenosine 3':5'-monophosphate-regulated phosphoprotein system of neuronal membranes. II. Solubilization, purification, and some properties of an endogenous adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1977 Jul 25;252(14):5164–5174. [PubMed] [Google Scholar]
  23. Vilhardt H., Baker R. V., Hope D. B. Isolation and protein composition of membranes of neurosecretory vesicles and plasma membranes from the neural lobe of the bovine pituitary gland. Biochem J. 1975 Apr;148(1):57–65. doi: 10.1042/bj1480057. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES