Abstract
Thiol-treated spinach (Spinacia oleracea) chloroplast fructose bisphosphatase is powerfully inhibited by Ca2+ non-competitively with respect to its substrate, fructose 1,6-bisphosphate. 500 microM-Ca2+ causes virtually complete inhibition and the Ki is 40 microM. Severe inhibition of sedoheptulose bisphosphatase is also caused by Ca2+. A role for Ca2+ in regulation of the Calvin cycle in spinach chloroplasts is proposed.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Avron M., Gibbs M. Properties of phosphoribulokinase of whole chloroplasts. Plant Physiol. 1974 Feb;53(2):136–139. doi: 10.1104/pp.53.2.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barber J., Mills J., Nicolson J. Studies with cation specific ionophores show that within the intact chloroplast Mg++ acts as the main exchange cation for H+ pumping. FEBS Lett. 1974 Dec 1;49(1):106–110. doi: 10.1016/0014-5793(74)80643-5. [DOI] [PubMed] [Google Scholar]
- Barr R., Troxel K. S., Crane F. L. EGTA, a calcium chelator, inhibits electron transport in photosystem II of spinach chloroplasts at two different sites. Biochem Biophys Res Commun. 1980 Jan 15;92(1):206–212. doi: 10.1016/0006-291x(80)91540-5. [DOI] [PubMed] [Google Scholar]
- Ben-Hayyim G. Mg2+ translocation across the thylakoid membrane: studies using the ionophore A 23187. Eur J Biochem. 1978 Feb 1;83(1):99–104. doi: 10.1111/j.1432-1033.1978.tb12072.x. [DOI] [PubMed] [Google Scholar]
- Bulychev A. A., Vredenberg W. J. Effect of ionophores A23187 and nigericin on the light-induced redistribution of Mg2+, K+ and H+ across the thylakoid membrane. Biochim Biophys Acta. 1976 Oct 13;449(1):48–58. doi: 10.1016/0005-2728(76)90006-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charles S. A., Halliwell B. Properties of freshly purified and thiol-treated spinach chloroplast fructose bisphosphatase. Biochem J. 1980 Mar 1;185(3):689–693. doi: 10.1042/bj1850689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cockburn W., Baldry C. W., Walker D. A. Some effects of inorganic phosphate on O2 evolution by isolated chloroplasts. Biochim Biophys Acta. 1967;143(3):614–624. doi: 10.1016/0005-2728(67)90067-9. [DOI] [PubMed] [Google Scholar]
- Davis D. J., Gross E. L. Protein-protein interactions of light-harvesting pigment protein from spinach chloroplasts. I.Ca-2+ binding and its relation to protein association. Biochim Biophys Acta. 1975 Jun 17;387(3):557–567. doi: 10.1016/0005-2728(75)90093-6. [DOI] [PubMed] [Google Scholar]
- Hall D. O. Nomenclature for isolated chloroplasts. Nat New Biol. 1972 Jan 26;235(56):125–126. doi: 10.1038/newbio235125a0. [DOI] [PubMed] [Google Scholar]
- Heber U., Santarius K. A. Direct and indirect transfer of ATP and ADP across the chloroplast envelope. Z Naturforsch B. 1970 Jul;25(7):718–728. doi: 10.1515/znb-1970-0714. [DOI] [PubMed] [Google Scholar]
- Hind G., Nakatani H. Y., Izawa S. Light-dependent redistribution of ions in suspensions of chloroplast thylakoid membranes. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1484–1488. doi: 10.1073/pnas.71.4.1484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krause G. H. Light-induced movement of magnesium ions in intact chloroplasts. Spectroscopic determination with Eriochrome Blue SE. Biochim Biophys Acta. 1977 Jun 9;460(3):500–510. doi: 10.1016/0005-2728(77)90088-3. [DOI] [PubMed] [Google Scholar]
- Nakatani H. Y., Barber J. An improved method for isolating chloroplasts retaining their outer membranes. Biochim Biophys Acta. 1977 Sep 14;461(3):500–512. [PubMed] [Google Scholar]
- Nobel P. S. Light-induced changes in the ionic content of chloroplasts in Pisum sativum. Biochim Biophys Acta. 1969 Jan 14;172(1):134–143. doi: 10.1016/0005-2728(69)90098-x. [DOI] [PubMed] [Google Scholar]
- Portis A. R., Jr, Heldt H. W. Light-dependent changes of the Mg2+ concentration in the stroma in relation to the Mg2+ dependency of CO2 fixation in intact chloroplasts. Biochim Biophys Acta. 1976 Dec 6;449(3):434–436. doi: 10.1016/0005-2728(76)90154-7. [DOI] [PubMed] [Google Scholar]
- Portis A. R., Jr, Heldt H. W. Light-dependent changes of the Mg2+ concentration in the stroma in relation to the Mg2+ dependency of CO2 fixation in intact chloroplasts. Biochim Biophys Acta. 1976 Dec 6;449(3):434–436. doi: 10.1016/0005-2728(76)90154-7. [DOI] [PubMed] [Google Scholar]
- Prochaska L. J., Gross E. L. The effect of 1-ethyl-3(3-dimethylaminopropyl)carbodiimide on calcium binding and associated changes in chloroplast structure and chlorophyll a fluorescence in spinach chloroplasts. Biochim Biophys Acta. 1975 Jan 31;376(1):126–135. doi: 10.1016/0005-2728(75)90211-x. [DOI] [PubMed] [Google Scholar]
- RACKER E., SCHROEDER E. A. The reductive pentose phosphate cycle. II. Specific C-1 phosphatases for fructose 1,6-diphosphate and sedoheptulose 1,7-diphosphate. Arch Biochem Biophys. 1958 Apr;74(2):326–344. doi: 10.1016/0003-9861(58)90004-3. [DOI] [PubMed] [Google Scholar]
- Roeske R. W., Isaac S., King T. E., Steinrauf L. K. The binding of barium and calcium ions by the antibiotic beauvericin. Biochem Biophys Res Commun. 1974 Apr 8;57(3):554–561. doi: 10.1016/0006-291x(74)90582-8. [DOI] [PubMed] [Google Scholar]
- Werdan K., Heldt H. W., Milovancev M. The role of pH in the regulation of carbon fixation in the chloroplast stroma. Studies on CO2 fixation in the light and dark. Biochim Biophys Acta. 1975 Aug 11;396(2):276–292. doi: 10.1016/0005-2728(75)90041-9. [DOI] [PubMed] [Google Scholar]