Abstract
In a previous study [Parce, Cunningham & Waite (1978) Biochemistry 17, 1634-1639] changes in mitochondrial phospholipid metabolism and energy-linked functions were monitored as coupled mitochondria were aged in iso-osmotic sucrose solution at 18 degrees C. The sequence of events that occur in mitochondrial deterioration under the above conditions have been established more completely. Total adenine nucleotides are depleted early in the aging process, and their loss parallels the decline in respiratory control. Related to the loss of total adenine nucleotides is a dramatic decrease in ADP and ATP translocation (uptake). The decline of respiratory control is due primarily to a decrease in State-3 respiration; loss of this respiratory activity can be related to the decline in ADP translocation. Mitochondrial ATPase activity does not increase significantly until State-4 respiration has increased appreciably. At the time of loss of respiratory control the ATPase activity increases to equal the uncoupler-stimulated activity. The H+/O ratio and P/O ratios do not decrease appreciably until respiratory control is lost. Similarly, permeability of the membrane to the passive diffusion of protons increases only after respiratory control is lost. There observations reinforce our earlier conclusion that there are two main phases in mitochondrial aging. The first phase is characterized by loss of the ability to translocate adenine nucleotides. The second phase is characterized by a decline in the ability of the mitochondrion to conserve energy (i.e. maintain a respiration-driven proton gradient) and to synthesize ATP.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boime I., Smith E. E., Hunter F. E., Jr The role of fatty acids in mitochondrial changes during liver ischemia. Arch Biochem Biophys. 1970 Aug;139(2):425–443. doi: 10.1016/0003-9861(70)90496-0. [DOI] [PubMed] [Google Scholar]
- Brand M. D., Reynafarje B., Lehninger A. L. Stoichiometric relationship between energy-dependent proton ejection and electron transport in mitochondria. Proc Natl Acad Sci U S A. 1976 Feb;73(2):437–441. doi: 10.1073/pnas.73.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buffa P., Guarriera-Bobyleva V., Muscatello U., Pasquali-Ronchetti I. Conformational changes of mitochondria associated with uncoupling of oxidative phosphorylation in vivo and in vitro. Nature. 1970 Apr 18;226(5242):272–274. doi: 10.1038/226272a0. [DOI] [PubMed] [Google Scholar]
- Chan S. H., Higgins E., Jr Uncoupling activity of endogenous free fatty acids in rat liver mitochondria. Can J Biochem. 1978 Feb;56(2):111–116. doi: 10.1139/o78-018. [DOI] [PubMed] [Google Scholar]
- Christiansen R. O., Steensland H., Loyter A., Saltzgaber J., Racker E. Energy-linked ion translocation in submitochondrial particles. II. Properties of submitochondrial particles capable of Ca++ translocation. J Biol Chem. 1969 Aug 25;244(16):4428–4436. [PubMed] [Google Scholar]
- Gaja G., Ferrero M. E., Piccoletti R., Bernelli-Zazzera A. Phosphorylation and redox states in ischemic liver. Exp Mol Pathol. 1973 Oct;19(2):248–265. doi: 10.1016/0014-4800(73)90083-x. [DOI] [PubMed] [Google Scholar]
- Hinkle P. C., Horstman L. L. Respiration-driven proton transport in submitochondrial particles. J Biol Chem. 1971 Oct 10;246(19):6024–6028. [PubMed] [Google Scholar]
- Mitchell P., Moyle J. Respiration-driven proton translocation in rat liver mitochondria. Biochem J. 1967 Dec;105(3):1147–1162. doi: 10.1042/bj1051147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ozelkök S. I., Romani R. J. Restoration of energy-linked functions in "aging" rat-liver mitochondria. Life Sci. 1974 Apr 16;14(8):1427–1431. doi: 10.1016/0024-3205(74)90152-0. [DOI] [PubMed] [Google Scholar]
- Parce J. W., Cunningham C. C., Waite M. Mitochondrial phospholipase A2 activity and mitochondrial aging. Biochemistry. 1978 May 2;17(9):1634–1639. doi: 10.1021/bi00602a009. [DOI] [PubMed] [Google Scholar]
- Scarpa A., Lindsay J. G. Maintenance of energy-linked functions in rat-liver mitochondria aged in the presence of nupercaine. Eur J Biochem. 1972 Jun 9;27(3):401–407. doi: 10.1111/j.1432-1033.1972.tb01851.x. [DOI] [PubMed] [Google Scholar]
- Siliprandi D., Siliprandi N., Scutari G., Zoccarato F. Restoration of some energy linked processes lost during the ageing of rat liver mitochondria. Biochem Biophys Res Commun. 1973 Dec 10;55(3):563–567. doi: 10.1016/0006-291x(73)91180-7. [DOI] [PubMed] [Google Scholar]
- Spach P. I., Parce J. W., Cunningham C. C. Effect of chronic ethanol administration on energy metabolism and phospholipase A2 activity in rat liver. Biochem J. 1979 Jan 15;178(1):23–33. doi: 10.1042/bj1780023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trump B. F., Laiho K. A., Mergner W. J., Arstila A. U. Studies on the subcellular pathophysiology of acute lethal cell injury. Beitr Pathol. 1974;152(3):243–271. doi: 10.1016/s0005-8165(74)80177-0. [DOI] [PubMed] [Google Scholar]
- Wojtczak L., Zaluska H. The inhibition of translocation of adenine nucleotides through mitochondrial membranes by oleate. Biochem Biophys Res Commun. 1967 Jul 10;28(1):76–81. doi: 10.1016/0006-291x(67)90409-3. [DOI] [PubMed] [Google Scholar]