Abstract
Amorphous isomerically pure biliverdin IX alpha is readily prepared in more than 70% yield by dehydrogenation of bilirubin with 2,3-dichloro-5,6-dicyanobenzoquinone in dimethyl sulphoxide under carefully controlled conditions. Crystalline biliverdin IX alpha and amorphous [14C]biliverdin can be obtained similarly in more than 40+ yield. The pure crystalline pigment was characterized by elemental analysis, methylation, chemical and enzymic reduction to bilirubin, i.r.- and u.v.-visible-absorption spectroscopy, n.m.r. spectroscopy and field-desorption mass spectrometry, and its solubility was determined. Under certain conditions, dehydrogenation, gave biliverdin contaminated with III alpha and XIII alpha isomers as a result of disproporationation of bilirubin. Formation of non-IX alpha isomers depends on the concentrations of the reagents and the order in which they are mixed, and occurs under neutral anaerobic conditions. Free-radical reactions probably are responsible, suggesting that the first step in the deydrogenation of bilirubin with 2,3-dichloro-5,6-dicyanobenzoquinone in dimethyl sulphoxide is formation of a bilirubin cation radical, rather than hydride ion abstraction.
Full text
PDF















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonnett R., McDonagh A. F. The meso-reactivity of porphyrins and related compounds. VI. Oxidative cleavage of the haem system. The four isomeric biliverdins of the IX series. J Chem Soc Perkin 1. 1973;9:881–888. doi: 10.1039/p19730000881. [DOI] [PubMed] [Google Scholar]
- Chae Q., Song P. S. Linear dichroic spectra and fluorescence polarization of biliverdin. J Am Chem Soc. 1975 Jul 23;97(15):4176–4183. doi: 10.1021/ja00848a004. [DOI] [PubMed] [Google Scholar]
- Cole W. J., Chapman D. J., Siegelman H. W. The structure and properties of phycocyanobilin and related bilatrienes. Biochemistry. 1968 Aug;7(8):2929–2935. doi: 10.1021/bi00848a033. [DOI] [PubMed] [Google Scholar]
- Crespi H. L., Smith U., Katz J. J. Phycocyanobilin. Structure and exchange studies by nuclear magnetic resonance and its mode of attachment in phycocyanin. A model for phytochrome. Biochemistry. 1968 Jun;7(6):2232–2242. doi: 10.1021/bi00846a028. [DOI] [PubMed] [Google Scholar]
- FOG J., JELLUM E. Structure of bilirubin. Nature. 1963 Apr 6;198:88–89. doi: 10.1038/198088b0. [DOI] [PubMed] [Google Scholar]
- Fu E., Friedman L., Siegelman H. W. Mass-spectral identification and purification of phycoerythrobilin and phycocyanobilin. Biochem J. 1979 Apr 1;179(1):1–6. doi: 10.1042/bj1790001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helman E. Z., Spiehler V., Holland S. Elimination of error caused by hemolysis and bilirubin-induced color quenching in clinical radioimmunoassays. Clin Chem. 1974 Sep;20(9):1187–1193. [PubMed] [Google Scholar]
- Lee J. J., Cowger M. L. Circular dichroism studies of protein-bound biliverdin. Res Commun Chem Pathol Pharmacol. 1973 Mar;5(2):505–514. [PubMed] [Google Scholar]
- Lester R., Klein P. D. Biosynthesis of tritiated bilirubin and studies of its excretion in the rat. J Lab Clin Med. 1966 Jun;67(6):1000–1012. [PubMed] [Google Scholar]
- Matheson I. B., Toledo M. M. The singlet oxygen reactivity of biliverdin. Photochem Photobiol. 1977 Mar;25(3):243–248. doi: 10.1111/j.1751-1097.1977.tb06906.x. [DOI] [PubMed] [Google Scholar]
- McDonagh A. F., Assisi F. Commercial bilirubin: A trinity of isomers. FEBS Lett. 1971 Nov 1;18(2):315–317. doi: 10.1016/0014-5793(71)80475-1. [DOI] [PubMed] [Google Scholar]
- McDonagh A. F., Assisi F. The ready isomerization of bilirubin IX- in aqueous solution. Biochem J. 1972 Sep;129(3):797–800. doi: 10.1042/bj1290797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDonagh A. F. Thermal and photochemical reactions of bilirubin IX-alpha. Ann N Y Acad Sci. 1975 Apr 15;244:553–569. doi: 10.1111/j.1749-6632.1975.tb41554.x. [DOI] [PubMed] [Google Scholar]
- OSTROW J. D., HAMMAKER L., SCHMID R. The preparation of crystalline bilirubin-C14. J Clin Invest. 1961 Aug;40:1442–1452. doi: 10.1172/JCI104375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plieninger H., el-Barkawi F., Ehl K., Kohler R., McDonagh A. F. Neue Synthese und 14 C-Markierung von Bilirubin-IXalpha. Justus Liebigs Ann Chem. 1972 Apr;758:195–201. doi: 10.1002/jlac.19727580122. [DOI] [PubMed] [Google Scholar]
- Schram B. L., Kroes H. H. Structure of phycocyanobilin. Eur J Biochem. 1971 Apr 30;19(4):581–594. doi: 10.1111/j.1432-1033.1971.tb01352.x. [DOI] [PubMed] [Google Scholar]
- Stevens B., Small R. D., Jr The photoperoxidation of unsaturated organic molecules--XV. O21Delta g quenching by bilirubin and biliverdin. Photochem Photobiol. 1976 Jan;23(1):33–36. doi: 10.1111/j.1751-1097.1976.tb06767.x. [DOI] [PubMed] [Google Scholar]
- Stoll M. S., Gray C. H. The preparation and characterization of bile pigments. Biochem J. 1977 Apr 1;163(1):59–101. doi: 10.1042/bj1630059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tenhunen R., Ross M. E., Marver H. S., Schmid R. Reduced nicotinamide-adenine dinucleotide phosphate dependent biliverdin reductase: partial purification and characterization. Biochemistry. 1970 Jan 20;9(2):298–303. doi: 10.1021/bi00804a016. [DOI] [PubMed] [Google Scholar]
- Walker D., Hiebert J. D. 2,3-dichloro-5,6-dicyanobenzoquinone and its reactions. Chem Rev. 1967 Apr;67(2):153–195. doi: 10.1021/cr60246a002. [DOI] [PubMed] [Google Scholar]


