Abstract
Progress curves of the reaction catalysed by pyruvate kinase from Escherichia coli K12, designed to cover the four-dimensional concentration space of phosphoenolpyruvate, ADP, Mg2+ and ATP in the regulatory region, were recorded with the pH-stat method (pH 7.0 and 25 degrees C). Additional initial-rate measurement were performed to assess specific points. Two methods for the evaluation of progress curves were used: fitting the rate law to the rates obtained from the tangents of the progress curves and fitting the integrated rate law directly to the curves. Two models, both extensions of the concerted model given by Monod, Wyman & Changeux [(1965) J. Mol. Biol. 12, 88--118] with four protomers, could be fitted to the data within the experimental error. Model discrimination in favour of one of these models was possible by proper experimental design. In the selected model one conformational state of the enzyme forms the active complex. The active site of a second conformational state forms abortive complexes with Mg2+, causing strong inhibition at high Mg2+ concentrations. In the absence of ligands, most of the enzyme is in a third state that binds ATP at an allosteric site.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ainsworth S., MacFarlane N. A kinetic study of rabbit muscle pyruvate kinase. Biochem J. 1973 Feb;131(2):223–236. doi: 10.1042/bj1310223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alberty R. A. Effect of pH and metal ion concentration on the equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate. J Biol Chem. 1968 Apr 10;243(7):1337–1343. [PubMed] [Google Scholar]
- Balinsky D., Cayanis E., Bersohn I. Comparative kinetic study of human pyruvate kinases isolated from adult and fetal livers and from hepatoma. Biochemistry. 1973 Feb 27;12(5):863–870. doi: 10.1021/bi00729a013. [DOI] [PubMed] [Google Scholar]
- Dann L. G., Britton H. G. Kinetics and mechanism of action of muscle pyruvate kinase. Biochem J. 1978 Jan 1;169(1):39–54. doi: 10.1042/bj1690039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibriel A. Y., Doelle H. W. Investigation into pyruvate kinases from Escherichia coli K-12 grown under aerobic and anaerobic conditions. Microbios. 1975;12(50):179–197. [PubMed] [Google Scholar]
- Haeckel R., Hess B., Lauterborn W., Wüster K. H. Purification and allosteric properties of yeast pyruvate kinase. Hoppe Seylers Z Physiol Chem. 1968 May;349(5):699–714. doi: 10.1515/bchm2.1968.349.1.699. [DOI] [PubMed] [Google Scholar]
- MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
- MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
- Macfarlane N., Ainsworth S. A kinetic study of Baker's-yeast pyruvate kinase activated by fructose 1,6-diphosphate. Biochem J. 1972 Oct;129(5):1035–1047. doi: 10.1042/bj1291035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macfarlane N., Ainsworth S. A kinetic study of pig liver pyruvate kinase activated by fructose diphosphate. Biochem J. 1974 Jun;139(3):499–508. doi: 10.1042/bj1390499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malcovati M., Kornberg H. L. Two types of pyruvate kinase in Escherichia coli K12. Biochim Biophys Acta. 1969 Apr 22;178(2):420–423. doi: 10.1016/0005-2744(69)90417-3. [DOI] [PubMed] [Google Scholar]
- Malcovati M., Valentini G., Kornberg H. L. Two forms of pyruvate kinase in E. coli: their properties and regulation. Acta Vitaminol Enzymol. 1973;27(1):96–111. [PubMed] [Google Scholar]
- Mannervik B. Nonlinear regression methods in design of experiments and mathematical modelling. Applications to the analysis of the steady-state kinetics of glutathione reductase. Biosystems. 1975 Jul;7(1):101–119. doi: 10.1016/0303-2647(75)90048-9. [DOI] [PubMed] [Google Scholar]
- Markus M., Plesser T. Design and analysis of progress curves in enzyme kinetics. Biochem Soc Trans. 1976;4(2):361–364. doi: 10.1042/bst0040361. [DOI] [PubMed] [Google Scholar]
- Minton A. P., Imai K. The three-state model: a minimal allosteric description of homotropic and heterotropic effects in the binding of ligands to hemoglobin. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1418–1421. doi: 10.1073/pnas.71.4.1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOLD F., BALLOU C. E. Studies on the enzyme enolase. I. Equilibrium studies. J Biol Chem. 1957 Jul;227(1):301–312. [PubMed] [Google Scholar]
- Waygood E. B., Mort J. S., Sanwal B. D. The control of pyruvate kinase of Escherichia coli. Binding of substrate and allosteric effectors to the enzyme activated by fructose 1,6-bisphosphate. Biochemistry. 1976 Jan 27;15(2):277–282. doi: 10.1021/bi00647a006. [DOI] [PubMed] [Google Scholar]
- Waygood E. B., Sanwal B. D. Regulation of pyruvate kinases by succinyl coenzyme A. Biochem Biophys Res Commun. 1972 Jul 25;48(2):402–407. doi: 10.1016/s0006-291x(72)80065-2. [DOI] [PubMed] [Google Scholar]
- Waygood E. B., Sanwal B. D. The control of pyruvate kinases of Escherichia coli. I. Physicochemical and regulatory properties of the enzyme activated by fructose 1,6-diphosphate. J Biol Chem. 1974 Jan 10;249(1):265–274. [PubMed] [Google Scholar]
