Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Sep 1;189(3):447–453. doi: 10.1042/bj1890447

Human cathepsin B. Application of the substrate N-benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide to a study of the inhibition by leupeptin.

C G Knight
PMCID: PMC1162023  PMID: 7213339

Abstract

1. The kinetic parameters Kcat. and Km were determined for the hydrolysis of some arginine naphthylamides by human cathepsin B. 2. A new and efficient synthesis of Z-Arg-Arg-NNap (benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide) was developed. 3. Z-Arg-Arg-NNap was a specific and sensitive substrate for cathepsin B, and was used for kinetic studies. 4. Values of kcat. were maximal in the pH range 5.4--6.2, and depended on a single ionizing group of pKa 4.4. 5. Leupeptin was a purely competitive inhibitor of human cathepsin B. 6. The effect of pH on the apparent inhibitor constant, Ki (app.), was determined. Ki (app.) was pH-independent in the range pH 4.3--6.0, with the mean value 7 x 10(-9) M.

Full text

PDF
447

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aoyagi T., Miyata S., Nanbo M., Kojima F., Matsuzaki M. Biological activities of leupeptins. J Antibiot (Tokyo) 1969 Nov;22(11):558–568. doi: 10.7164/antibiotics.22.558. [DOI] [PubMed] [Google Scholar]
  2. Bajkowski A. S., Frankfater A. Specific spectrophotometric assays for cathepsin B1. Anal Biochem. 1975 Sep;68(1):119–127. doi: 10.1016/0003-2697(75)90685-5. [DOI] [PubMed] [Google Scholar]
  3. Barrett A. J. A new assay for cathepsin B1 and other thiol proteinases. Anal Biochem. 1972 May;47(1):280–293. doi: 10.1016/0003-2697(72)90302-8. [DOI] [PubMed] [Google Scholar]
  4. Barrett A. J. An improved color reagent for use in Barrett's assay of Cathepsin B. Anal Biochem. 1976 Nov;76(50):374–376. doi: 10.1016/0003-2697(76)90298-0. [DOI] [PubMed] [Google Scholar]
  5. Barrett A. J. Human cathepsin B1. Purification and some properties of the enzyme. Biochem J. 1973 Apr;131(4):809–822. doi: 10.1042/bj1310809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bayliss M. T., Ali S. Y. Studies on cathepsin B in human articular cartilage. Biochem J. 1978 Apr 1;171(1):149–154. doi: 10.1042/bj1710149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bendall M. R., Cartwright I. L., Clark P. I., Lowe G., Nurse D. Inhibition of papain by N-acyl-aminoacetaldehydes and N-acyl-aminopropanones. Evidence for hemithioacetal formation by a cross-saturation technique in nuclear-magnetic resonance spectroscopy. Eur J Biochem. 1977 Sep 15;79(1):201–209. doi: 10.1111/j.1432-1033.1977.tb11798.x. [DOI] [PubMed] [Google Scholar]
  8. Bosshard H. R., Berger A. The topographical differences in the active site region of alpha-chymotrypsin, subtilisin Novo, and subtilisin Carlsberg. Mapping the aromatic binding site by inhibitors (virtual substrates). Biochemistry. 1974 Jan 15;13(2):266–277. doi: 10.1021/bi00699a006. [DOI] [PubMed] [Google Scholar]
  9. Cornish-Bowden A. A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem J. 1974 Jan;137(1):143–144. doi: 10.1042/bj1370143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Davidson E., Poole B. Fractionation of the rat liver enzymes that hydrolyze benzoyl-arginine-2-naphthylamide. Biochim Biophys Acta. 1975 Aug 26;397(2):437–442. doi: 10.1016/0005-2744(75)90133-3. [DOI] [PubMed] [Google Scholar]
  12. Dean R. T. The roles of cathepsins B1 and D in the digestion of cytoplasmic protiens in vitro by lysosomal extracts. Biochem Biophys Res Commun. 1976 Jan 26;68(2):518–523. doi: 10.1016/0006-291x(76)91176-1. [DOI] [PubMed] [Google Scholar]
  13. Huisman W., Lanting L., Doddema H. J., Bouma J. M., Gruber M. Role of individual cathepsins in lysosomal protein digestion as tested by specific inhibitors. Biochim Biophys Acta. 1974 Nov 25;370(1):297–307. doi: 10.1016/0005-2744(74)90054-0. [DOI] [PubMed] [Google Scholar]
  14. Kar N. C., Pearson C. M. Early elevation of cathepsin B1 in human muscle disease. Biochem Med. 1977 Aug;18(1):126–129. doi: 10.1016/0006-2944(77)90059-x. [DOI] [PubMed] [Google Scholar]
  15. Kirsch J. F., Igelström M. The kinetics of the papain-catalyzed hydrolysis of esters of carbobenzoxyglycine. Evidence for an acyl-enzyme intermediate. Biochemistry. 1966 Feb;5(2):783–791. doi: 10.1021/bi00866a053. [DOI] [PubMed] [Google Scholar]
  16. Kirschke H., Langner J., Wiederanders B., Ansorge S., Bohley P., Broghammer U. Intrazellulärer Proteinabbau. VII. Kathepsin L und H: Zwei neue Proteinasen aus Rattenleberlysosomen. Acta Biol Med Ger. 1976;35(3-4):285–299. [PubMed] [Google Scholar]
  17. Kirschke H., Langner J., Wiederanders B., Ansorge S., Bohley P. Cathepsin L. A new proteinase from rat-liver lysosomes. Eur J Biochem. 1977 Apr 1;74(2):293–301. doi: 10.1111/j.1432-1033.1977.tb11393.x. [DOI] [PubMed] [Google Scholar]
  18. Kirschke H., Langner J., Wiederanders B., Ansorge S., Bohley P., Hanson H. Cathepsin H: an endoaminopeptidase from rat liver lysosomes. Acta Biol Med Ger. 1977;36(2):185–199. [PubMed] [Google Scholar]
  19. Knight C. G., Green N. M. The accessibility of protein-bound dinitrophenyl groups to univalent fragments of anti-dinitrophenyl antibody. Biochem J. 1976 Nov;159(2):323–333. doi: 10.1042/bj1590323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lewis C. A., Jr, Wolfenden R. Thiohemiacetal formation by inhibitory aldehydes at the active site of papain. Biochemistry. 1977 Nov 1;16(22):4890–4895. doi: 10.1021/bi00641a023. [DOI] [PubMed] [Google Scholar]
  21. MacGregor R. R., Hamilton J. W., Kent G. N., Shofstall R. E., Cohn D. V. The degradation of proparathormone and parathormone by parathyroid and liver cathepsin B. J Biol Chem. 1979 Jun 10;254(11):4428–4433. [PubMed] [Google Scholar]
  22. MacGregor R. R., Hamilton J. W., Shofstall R. E., Cohn D. V. Isolation and characterization of porcine parathyroid cathepsin B. J Biol Chem. 1979 Jun 10;254(11):4423–4427. [PubMed] [Google Scholar]
  23. Maeda K., Kawamura K., Kondo S., Aoyagi T., Takeuchi T. The structure and activity of leupeptins and related analogs. J Antibiot (Tokyo) 1971 Jun;24(6):402–404. doi: 10.7164/antibiotics.24.402. [DOI] [PubMed] [Google Scholar]
  24. McDonald J. K., Ellis S. On the substrate specificity of cathepsins B1 and B2 including a new fluorogenic substrate for cathepsin B1. Life Sci. 1975 Oct 15;17(8):1269–1276. doi: 10.1016/0024-3205(75)90137-x. [DOI] [PubMed] [Google Scholar]
  25. PLAPINGER R. E., NACHLAS M. M., SELIGMAN M. L., SELIGMAN A. M. SYNTHESIS OF CHROMOGENIC ARGININE DERIVATIVES AS SUBSTRATES FOR TRYPSIN. J Org Chem. 1965 Jun;30:1781–1785. doi: 10.1021/jo01017a017. [DOI] [PubMed] [Google Scholar]
  26. Poole A. R., Tiltman K. J., Recklies A. D., Stoker T. A. Differences in secretion of the proteinase cathepsin B at the edges of human breast carcinomas and fibroadenomas. Nature. 1978 Jun 15;273(5663):545–547. doi: 10.1038/273545a0. [DOI] [PubMed] [Google Scholar]
  27. Quinn P. S., Judah J. D. Calcium-dependent Golgi-vesicle fusion and cathepsin B in the conversion of proalbumin into albumin in rat liver. Biochem J. 1978 May 15;172(2):301–309. doi: 10.1042/bj1720301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES