Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Sep 15;190(3):571–580. doi: 10.1042/bj1900571

The effect of fluroxene [(2,2,2-trifluoroethoxy)ethane] on haem biosynthesis and degradation

Melanie R Ziman 1, Jean J Bradshaw 1, Kathryn M Ivanetich 1,*
PMCID: PMC1162134  PMID: 6110422

Abstract

Acute fluroxene treatment of male Wistar rats decreases the amounts of hepatic microsomal cytochrome P-450 and haem, increases the activities of hepatic δ-aminolaevulinate synthase and haem oxygenase, and increases the amounts of haem precursors (δ-aminolaevulinate and porphobilinogen) in the urine. All of the above effects of fluroxene are enhanced by pretreatment of the experimental animals with 3-methylcholanthrene and phenobarbital. The amounts of porphyrins in the urine and faeces were generally unaffected by acute fluroxene treatment of uninduced or 3-methylcholanthrene- or phenobarbital-induced Wistar rats. 2,2,2-Trifluoroethyl ethyl ether, the saturated analogue of fluroxene, did not affect the amounts of hepatic cytochrome P-450 and haem, the amounts of any of the haem precursors in the urine or faeces, or the activity of hepatic haem oxygenase in phenobarbital-induced male Wistar rats. The amounts of hepatic cytochrome P-450 and haem and of the haem precursors in urine and faeces, and the activity of δ-aminolaevulinate synthase, were generally not altered by acute fluroxene treatment of uninduced male Long–Evans rats. Chronic treatment of Wistar rats with fluroxene resulted in small increases in the amounts of δ-aminolaevulinate and porphyrins in urine. The amounts of porphobilinogen in urine were elevated up to 2000%, whereas the amounts of the porphyrins in faeces were generally unaffected. After chronic fluroxene treatment, the activity of δ-aminolaevulinate synthase was increased, whereas the activity of uroporphyrinogen synthase was decreased. It is concluded that acute fluroxene treatment may affect haem biosynthesis and degradation by a mechanism similar to allylisopropylacetamide, namely by stimulating an atypical cytochrome P-450-dependent pathway for haem degradation. The effects of chronic fluroxene treatment on haem biosynthesis may be a consequence of this mechanism or a result of the inhibition by fluroxene of uroporphyrinogen synthase. Chronic fluroxene treatment of male rats affects the haem biosynthetic pathway in a manner similar to that seen in human genetic acute intermittent porphyria.

Full text

PDF
571

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. E., Bradlow H. L., Sassa S., Kappas A. Studies in porphyria. VIII. Relationship of the 5 alpha-reductive metabolism of steroid hormones to clinical expression of the genetic defect in acute intermittent porphyria. Am J Med. 1979 Apr;66(4):644–650. doi: 10.1016/0002-9343(79)91176-8. [DOI] [PubMed] [Google Scholar]
  2. Bakken A. F., Thaler M. M., Schmid R. Metabolic regulation of heme catabolism and bilirubin production. I. Hormonal control of hepatic heme oxygenase activity. J Clin Invest. 1972 Mar;51(3):530–536. doi: 10.1172/JCI106841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bissell D. M., Hammaker L. E. Cytochrome P-450 heme and the regulation of hepatic heme oxygenase activity. Arch Biochem Biophys. 1976 Sep;176(1):91–102. doi: 10.1016/0003-9861(76)90144-2. [DOI] [PubMed] [Google Scholar]
  4. Bissell D. M., Hammaker L. E. Cytochrome p-450 heme and the regulation of delta-aminolevulinic acid synthetase in the liver. Arch Biochem Biophys. 1976 Sep;176(1):103–112. doi: 10.1016/0003-9861(76)90145-4. [DOI] [PubMed] [Google Scholar]
  5. Bradshaw J. J., Ziman M. R., Ivanetich K. M. The degradation of different forms of cytochrome P-450 in vivo by fluroxene and allyl-iso-propylacetamide. Biochem Biophys Res Commun. 1978 Dec 14;85(3):859–866. doi: 10.1016/0006-291x(78)90623-x. [DOI] [PubMed] [Google Scholar]
  6. Brodie M. J., Moore M. R., Goldberg A. Enzyme abnormalities in the porphyrias. Lancet. 1977 Oct 1;2(8040):699–701. doi: 10.1016/s0140-6736(77)90507-4. [DOI] [PubMed] [Google Scholar]
  7. Correia M. A., Burk R. F. Rapid stimulation of hepatic microsomal heme oxygenase in selenium-deficient rats. An effect of phenobarbital. J Biol Chem. 1978 Sep 10;253(17):6203–6210. [PubMed] [Google Scholar]
  8. DRESEL E. I., RIMINGTON C., TOOTH B. E. Determination of urinary uroporphyrin by a direct extraction method. Scand J Clin Lab Invest. 1956;8(1):73–78. doi: 10.3109/00365515609049247. [DOI] [PubMed] [Google Scholar]
  9. De Matteis F. Drug-induced destruction of cytochrome P-450. Drug Metab Dispos. 1973 Jan-Feb;1(1):267–274. [PubMed] [Google Scholar]
  10. De Matteis F., Gibbs A. H. The effect of cobaltous chloride on liver haem metabolism in the rat. Evidence for inhibition of haem synthesis and for increased haem degradation. Ann Clin Res. 1976;8 (Suppl 17):193–197. [PubMed] [Google Scholar]
  11. De Matteis F., Gibbs A. H., Unseld A. Loss of haem from cytochrome P-450 caused by lipid peroxidation and 2-allyl-2-isoprophylacetamide. An abnormal pathway not involving production of carbon monoxide. Biochem J. 1977 Dec 15;168(3):417–422. doi: 10.1042/bj1680417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. De Matteis F. Loss of haem in rat liver caused by the porphyrogenic agent 2-allyl-2-isopropylacetamide. Biochem J. 1971 Oct;124(4):767–777. doi: 10.1042/bj1240767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Elder G. H., Gray C. H., Nicholson D. C. The porphyrias: a review. J Clin Pathol. 1972 Dec;25(12):1013–1033. doi: 10.1136/jcp.25.12.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. GOLDBERG A., RIMINGTON C. Experimentally produced porphyria in animals. Proc R Soc Lond B Biol Sci. 1955 Jan 27;143(911):257–279. doi: 10.1098/rspb.1955.0009. [DOI] [PubMed] [Google Scholar]
  15. Gemsa D., Woo C. H., Fudenberg H. H., Schmid R. Stimulation of heme oxygenase in macrophages and liver by endotoxin. J Clin Invest. 1974 Feb;53(2):647–651. doi: 10.1172/JCI107599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Guengerich F. P., Strickland T. W. Metabolism of vinyl chloride: destruction of the heme of highly purified liver Microsomal cytochrome P-450 by a metabolite. Mol Pharmacol. 1977 Nov;13(6):993–1004. [PubMed] [Google Scholar]
  17. HOLTI G., RIMINGTON C., TATE B. C., THOMAS G. An investigation of porphyria cutanea tarda. Q J Med. 1958 Jan;27(105):1–18. [PubMed] [Google Scholar]
  18. Holtzman J. L., Carr M. L. The temperature dependence of the components of the hepatic microsomal mixed-function oxidases. Arch Biochem Biophys. 1972 May;150(1):227–234. doi: 10.1016/0003-9861(72)90030-6. [DOI] [PubMed] [Google Scholar]
  19. Hutton J. J., Gross S. R. Chemical induction of hepatic porphyria in inbred strains of mice. Arch Biochem Biophys. 1970 Nov;141(1):284–292. doi: 10.1016/0003-9861(70)90134-7. [DOI] [PubMed] [Google Scholar]
  20. Ivanetich K. M., Aronson I., Katz I. D. The interaction of vinyl chloride with rat hepatic microsomal cytochrome P-450 in vitro. Biochem Biophys Res Commun. 1977 Feb 21;74(4):1411–1418. doi: 10.1016/0006-291x(77)90599-x. [DOI] [PubMed] [Google Scholar]
  21. Ivanetich K. M., Bradshaw J. J. An investigation of the degradation of cytochrome P-450 hemoproteins using SDS gel electrophoresis. Biochem Biophys Res Commun. 1977 Sep 9;78(1):317–322. doi: 10.1016/0006-291x(77)91256-6. [DOI] [PubMed] [Google Scholar]
  22. Ivanetich K. M., Bradshaw J. J., Marsh J. A., Harrison G. G., Kaminsky L. S. The role of cytochrome P-450 in the toxicity of fluroxene (2,2,2-trifluoroethyl vinyl ether) anaesthesia in vivo. Biochem Pharmacol. 1976 Apr 1;25(7):773–778. doi: 10.1016/0006-2952(76)90145-3. [DOI] [PubMed] [Google Scholar]
  23. Ivanetich K. M., Bradshaw J. J., Marsh J. A., Kaminsky L. S. The interaction of hepatic microsomal cytochrome P-450 with fluroxene (2,2,2-trifluoroethyl vinyl ether) in vitro. Biochem Pharmacol. 1976 Apr 1;25(7):779–784. doi: 10.1016/0006-2952(76)90146-5. [DOI] [PubMed] [Google Scholar]
  24. Ivanetich K. M., Lucas S., Marsh J. A., Ziman M. R., Katz I. D., Bradshaw J. J. Organic compounds. Their interaction with and degradation of hepatic microsomal drug-metabolizing enzymes in vitro. Drug Metab Dispos. 1978 May-Jun;6(3):218–225. [PubMed] [Google Scholar]
  25. Ivanetich K. M., Marsh J. A., Bradshaw J. J., Kaminsky L. S. Fluroxene (2,2,2-trifluoroethyl vinyl ether) mediated destruction of cytochrome P-450 in vitro. Biochem Pharmacol. 1975 Nov 1;24(21):1933–1936. doi: 10.1016/0006-2952(75)90377-9. [DOI] [PubMed] [Google Scholar]
  26. Järvisalo J., Gibbs A. H., de Matteis F. Accelerated conversion of heme to bile pigments caused in the liver by carbon disulfide and other sulfur-containing chemicals. Mol Pharmacol. 1978 Nov;14(6):1099–1106. [PubMed] [Google Scholar]
  27. Landaw S. A., Callahan E. W., Jr, Schmid R. Catabolism of heme in vivo: comparison of the simultaneous production of bilirubin and carbon monoxide. J Clin Invest. 1970 May;49(5):914–925. doi: 10.1172/JCI106311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Levin W., Lu A. Y., Jacobson M., Kuntzman R., Poyer J. L., McCay P. B. Lipid peroxidation and the degradation of cytochrome P-450 heme. Arch Biochem Biophys. 1973 Oct;158(2):842–852. doi: 10.1016/0003-9861(73)90580-8. [DOI] [PubMed] [Google Scholar]
  29. MAUZERALL D., GRANICK S. The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J Biol Chem. 1956 Mar;219(1):435–446. [PubMed] [Google Scholar]
  30. Maines M. D., Kappas A. Metals as regulators of heme metabolism. Science. 1977 Dec 23;198(4323):1215–1221. doi: 10.1126/science.337492. [DOI] [PubMed] [Google Scholar]
  31. Maines M. D., Kappas A. Studies on the mechanism of induction of haem oxygenase by cobalt and other metal ions. Biochem J. 1976 Jan 15;154(1):125–131. doi: 10.1042/bj1540125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Maines M. D., Kappas A. The induction of heme oxidation in various tissues by trace metals: evidence for the catabolism of endogenous heme by hepatic heme oxygenase. Ann Clin Res. 1976;8 (Suppl 17):39–46. [PubMed] [Google Scholar]
  33. Marsh J. A., Bradshaw J. J., Sapeika G. A., Lucas S. A., Kaminsky L. S., Ivanetich K. M. Further investigations of the metabolism of fluroxene and the degradation of cytochromes P-450 in vitro. Biochem Pharmacol. 1977 Sep 1;26(17):1601–1606. doi: 10.1016/0006-2952(77)90075-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Marver H. S., Tschudy D. P., Perlroth M. G., Collins A. Delta-aminolevulinic acid synthetase. I. Studies in liver homogenates. J Biol Chem. 1966 Jun 25;241(12):2803–2809. [PubMed] [Google Scholar]
  35. Meyer U. A., Schmid R. Hereditary hepatic porphyrias. Fed Proc. 1973 Jun;32(6):1649–1655. [PubMed] [Google Scholar]
  36. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  37. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. II. SOLUBILIZATION, PURIFICATION, AND PROPERTIES. J Biol Chem. 1964 Jul;239:2379–2385. [PubMed] [Google Scholar]
  38. Ortiz de Montellano P. R., Mico B. A., Yost G. S. Suicidal inactivation of cytochrome P-450. Formation of a heme-substrate covalent adduct. Biochem Biophys Res Commun. 1978 Jul 14;83(1):132–137. doi: 10.1016/0006-291x(78)90407-2. [DOI] [PubMed] [Google Scholar]
  39. RIMINGTON C., SVEINSSON S. L. The spectrophotometric determination of uroporphyrin. Scand J Clin Lab Invest. 1950;2(3):209–216. doi: 10.3109/00365515009049872. [DOI] [PubMed] [Google Scholar]
  40. SCHMID R., FIGEN J. F., SCHWARTZ S. Experimental porphyria. IV. Studies of liver catalase and other heme enzymes in sedormid porphyria. J Biol Chem. 1955 Nov;217(1):263–274. [PubMed] [Google Scholar]
  41. SCHMID R., SCHWARTZ S. Experimental porphyria. III. Hepatic type produced by sedormid. Proc Soc Exp Biol Med. 1952 Dec;81(3):685–689. doi: 10.3181/00379727-81-19987. [DOI] [PubMed] [Google Scholar]
  42. SCHWARTZ S., ZIEVE L., WATSON C. J. An improved method for the determination of urinary coproporphyrin and an evaluation of factors influencing the analysis. J Lab Clin Med. 1951 Jun;37(6):843–859. [PubMed] [Google Scholar]
  43. Sassa S., Granick S., Bickers D. R., Bradlow H. L., Kappas A. A microassay for uroporphyrinogen I synthase, one of three abnormal enzyme activities in acute intermittent porphyria, and its application to the study of the genetics of this disease. Proc Natl Acad Sci U S A. 1974 Mar;71(3):732–736. doi: 10.1073/pnas.71.3.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Strand L. J., Meyer U. A., Felsher B. F., Redeker A. G., Marver H. S. Decreased red cell uroporphyrinogen I synthetase activity in intermittent acute porphyria. J Clin Invest. 1972 Oct;51(10):2530–2536. doi: 10.1172/JCI107068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tenhunen R., Marver H. S., Schmid R. Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem. 1969 Dec 10;244(23):6388–6394. [PubMed] [Google Scholar]
  46. Tephly T. R., Hasegawa E., Baron J. Effect of drugs on heme synthesis in the liver. Metabolism. 1971 Feb;20(2):200–214. doi: 10.1016/0026-0495(71)90092-8. [DOI] [PubMed] [Google Scholar]
  47. Tschudy D. P., Bonkowsky H. L. Experimental porphyria. Fed Proc. 1972 Jan-Feb;31(1):147–159. [PubMed] [Google Scholar]
  48. Unseld A., de Matteis F. Destruction of endogenous and exogenous haem by 2-allyl-2-isopropylacetamide: role of the liver cytochrome P-450 which is inducible by phenobarbitone. Int J Biochem. 1978;9(12):865–869. doi: 10.1016/0020-711x(78)90061-7. [DOI] [PubMed] [Google Scholar]
  49. WITH T. K. Porphyrin concentration from ultraviolet extinction; a note on the calculation. Scand J Clin Lab Invest. 1955;7(2):193–194. doi: 10.3109/00365515509134507. [DOI] [PubMed] [Google Scholar]
  50. Walsh J. R. Hepatic porphyrias. Current concepts. Postgrad Med. 1977 Aug;62(2):71–81. doi: 10.1080/00325481.1977.11714578. [DOI] [PubMed] [Google Scholar]
  51. White I. N. Metabolic activation of acetylenic substituents to derivatives in the rat causing the loss of hepatic cytochrome P-450 and haem. Biochem J. 1978 Sep 15;174(3):853–861. doi: 10.1042/bj1740853. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES