Abstract
1. During fusion of chick-embryo myoblasts in culture, the surface membrane is affected as follows. Uptake of 2-aminoisobutyrate and 2-deoxyglucose, each of which is concentrated 20-fold relative to its concentration in the medium, is unaltered; uptake of alpha-methyl glucoside and choline (15 mM), each of which equilibrates relative to its concentration in the medium, approximately doubles. An approximate doubling also occurs in iodinatable surface protein (and in total protein) and in cell surface area as judged by light-microscopy. Adenylate cyclase (in the absence or the presence of fluoride) increases by more than 2-fold. 2. It is concluded that, during myoblast fusion cells increase in size, and this is reflected in an increased rate of simple diffusion; the rate of facilitated processes such as the uptake of amino acids and sugars, on the other hand, remains unaltered, though the activity of certain enzymes is increased. These results indicate that specific changes in the function of surface membrane occur during myoblast fusion in vitro.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blow A. M., Botham G. M., Lucy J. A. Calcium ions and cell fusion. Effects of chemical fusogens on the permeability of erythrocytes to calcium and other ions. Biochem J. 1979 Aug 15;182(2):555–563. doi: 10.1042/bj1820555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cates G. A., Holland P. C. Surface-labelling studies on skeletal-muscle cells in vitro. Heterogeneity of iodinated cell-surface proteins. Biochem J. 1980 Jan 15;186(1):211–216. doi: 10.1042/bj1860211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen L. B. Alteration in cell surface LETS protein during myogenesis. Cell. 1977 Mar;10(3):393–400. doi: 10.1016/0092-8674(77)90026-5. [DOI] [PubMed] [Google Scholar]
- Cozzarelli N. R. The mechanism of action of inhibitors of DNA synthesis. Annu Rev Biochem. 1977;46:641–668. doi: 10.1146/annurev.bi.46.070177.003233. [DOI] [PubMed] [Google Scholar]
- Farfel Z., Karlish S., Prives J. A transient increase in amino acid transport modulated by insulin in differentiating muscle cells. J Cell Physiol. 1979 Feb;98(2):279–282. doi: 10.1002/jcp.1040980204. [DOI] [PubMed] [Google Scholar]
- Fischbach G. D. Synapse formation between dissociated nerve and muscle cells in low density cell cultures. Dev Biol. 1972 Jun;28(2):407–429. doi: 10.1016/0012-1606(72)90023-1. [DOI] [PubMed] [Google Scholar]
- Graham F. L., Whitmore G. F. The effect of-beta-D-arabinofuranosylcytosine on growth, viability, and DNA synthesis of mouse L-cells. Cancer Res. 1970 Nov;30(11):2627–2635. [PubMed] [Google Scholar]
- Grove B. K., Stockdale F. E. Membrane function in differentiating skeletal muscle cells. I. Kinetic analysis of amino acid transport. Dev Biol. 1978 Sep;66(1):142–150. doi: 10.1016/0012-1606(78)90280-4. [DOI] [PubMed] [Google Scholar]
- Hartzell H. C., Fambrough D. M. Acetycholine receptor production and incorporation into membranes of developing muscle fibers. Dev Biol. 1973 Jan;30(1):153–165. doi: 10.1016/0012-1606(73)90054-7. [DOI] [PubMed] [Google Scholar]
- Hinegardner R. T. An improved fluorometric assay for DNA. Anal Biochem. 1971 Jan;39(1):197–201. doi: 10.1016/0003-2697(71)90476-3. [DOI] [PubMed] [Google Scholar]
- Hubbard A. L., Cohn Z. A. The enzymatic iodination of the red cell membrane. J Cell Biol. 1972 Nov;55(2):390–405. doi: 10.1083/jcb.55.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Impraim C. C., Foster K. A., Micklem K. J., Pasternak C. A. Nature of virally mediated changes in membrane permeability to small molecules. Biochem J. 1980 Mar 15;186(3):847–860. doi: 10.1042/bj1860847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KISSANE J. M., ROBINS E. The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J Biol Chem. 1958 Jul;233(1):184–188. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Prives J., Silman I., Amsterdam A. Appearance and disappearance of acetycholine receptor during differentiation of chick skeletal muscle in vitro. Cell. 1976 Apr;7(4):543–550. doi: 10.1016/0092-8674(76)90204-x. [DOI] [PubMed] [Google Scholar]
- Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
- Tepperman K., Morris G., Essien F., Heywood S. M. A mechanical dissociation method for preparation of muscle cell cultures. J Cell Physiol. 1975 Dec;86(3 Pt 1):561–565. doi: 10.1002/jcp.1040860313. [DOI] [PubMed] [Google Scholar]
- Wyke A. M., Impraim C. C., Knutton S., Pasternak C. A. Components involved in virally mediated membrane fusion and permeability changes. Biochem J. 1980 Sep 15;190(3):625–638. doi: 10.1042/bj1900625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zalin R. J., Montague W. Changes in adenylate cyclase, cyclic AMP, and protein kinase levels in chick myoblasts, and their relationship to differentiation. Cell. 1974 Jun;2(2):103–108. doi: 10.1016/0092-8674(74)90098-1. [DOI] [PubMed] [Google Scholar]

