Abstract
The atractyloside-insensitive accumulation of adenine nucleotides by rat liver mitochondria (as opposed to the exchange-diffusion catalysed by the adenine nucleotide translocase) has been measured by using the luciferin/luciferase assay as well as by measuring [14C]ATP uptake. In foetal rat liver mitochondria ATP is accumulated more rapidly than ADP, whereas AMP is not taken up. The uptake of ATP occurs against a concentration gradient, and the rate of ATP uptake is greater in foetal than in adult rat liver mitochondria. The accumulated [14C]ATP is shown to be present within the mitochondrial matrix space and is freely available to the adenine nucleotide translocase for exchange with ATP present in the external medium. The uptake is specific for ATP and ADP and is not inhibited by adenosine 5'-[beta gamma-imido] triphosphate, GTP, CTP, cyclic AMP or Pi, whereas dATP and AMP do inhibit ATP accumulation. The ATP accumulation is also inhibited by carbonyl cyanide m-chlorophenylhydrazone, KCN and mersalyl but is insensitive to atractyloside. The ATP uptake is concentration-dependent and exhibits Michaelis-Menten kinetics. The divalent cations Mg2+ and Ca2+ greatly enhance ATP accumulation, and the presence of hexokinase inhibits the uptake of ATP by foetal rat liver mitochondria. These latter effects provide an explanation for the low adenine nucleotide content of foetal rat liver mitochondria and the rapid increase that occurs in the mitochondrial adenine nucleotide concentration in vivo immediately after birth.
Full text
PDF![75](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a466/1162309/abaa70ced340/biochemj00411-0079.png)
![76](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a466/1162309/8143821363a1/biochemj00411-0080.png)
![77](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a466/1162309/9d1fa8e63d9a/biochemj00411-0081.png)
![78](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a466/1162309/1ec3e8017c3b/biochemj00411-0082.png)
![79](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a466/1162309/06db215c4ae1/biochemj00411-0083.png)
![80](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a466/1162309/451f43ac54e1/biochemj00411-0084.png)
![81](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a466/1162309/14a16e9dd658/biochemj00411-0085.png)
![82](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a466/1162309/ba8dd6b28f6a/biochemj00411-0086.png)
![83](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a466/1162309/74fd4e34852d/biochemj00411-0087.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aprille J. R., Asimakis G. K. Postnatal development of rat liver mitochondria: state 3 respiration, adenine nucleotide translocase activity, and the net accumulation of adenine nucleotides. Arch Biochem Biophys. 1980 May;201(2):564–575. doi: 10.1016/0003-9861(80)90546-9. [DOI] [PubMed] [Google Scholar]
- Carafoli E., Lehninger A. L. Binding of adenine nucleotides by mitochondria during active uptake of CA++. Biochem Biophys Res Commun. 1964 May 22;16(1):66–70. doi: 10.1016/0006-291x(64)90212-8. [DOI] [PubMed] [Google Scholar]
- Hallman M. Changes in mitochondrial respiratory chain proteins during perinatal development. Evidence of the importance of environmental oxygen tension. Biochim Biophys Acta. 1971 Dec 7;253(2):360–372. doi: 10.1016/0005-2728(71)90040-5. [DOI] [PubMed] [Google Scholar]
- Harris E. J., van Dam K. Changes of total water and sucrose space accompanying induced ion uptake or phosphate swelling of rat liver mitochondria. Biochem J. 1968 Feb;106(3):759–766. doi: 10.1042/bj1060759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hommes F. A., Everts R. S. Particulate and free hexokinase in fetal rat liver. Biol Neonate. 1978;33(3-4):193–200. doi: 10.1159/000241072. [DOI] [PubMed] [Google Scholar]
- Meisner H., Palmieri F., Quagliariello E. Effect of cations and protons on the kinetics of substrate uptake in rat liver mitochondria. Biochemistry. 1972 Mar 14;11(6):949–955. doi: 10.1021/bi00756a002. [DOI] [PubMed] [Google Scholar]
- Nakazawa T., Asami K., Suzuki H., Yukawa O. Appearance of energy conservation system in rat liver mitochondria during development. The role of adenine nucleotide translocation. J Biochem. 1973 Feb;73(2):397–406. [PubMed] [Google Scholar]
- Papa S., Francavilla A., Paradies G., Meduri B. The transport of pyruvate in rat liver mitochondria. FEBS Lett. 1971 Jan 30;12(5):285–288. doi: 10.1016/0014-5793(71)80200-4. [DOI] [PubMed] [Google Scholar]
- Pollack J. K., Sutton R. The adenine nucleotide translocator in foetal, suckling and adult rat liver mitochondria. Biochem Biophys Res Commun. 1978 Jan 13;80(1):193–198. doi: 10.1016/0006-291x(78)91122-1. [DOI] [PubMed] [Google Scholar]
- Pollak J. K. The interdependence of mitochondrial maturation and glycogen metabolism in perinatal rat liver. Biochem Soc Trans. 1977;5(1):341–348. doi: 10.1042/bst0050341. [DOI] [PubMed] [Google Scholar]
- Pollak J. K. The maturation of the inner membrane of foetal rat liver mitochondria. Biochem J. 1975 Sep;150(3):477–488. doi: 10.1042/bj1500477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prpić V., Spencer T. L., Bygrave F. L. Stable enhancement of calcium retention in mitochondria isolated from rat liver after the administration of glucagon to the intact animal. Biochem J. 1978 Dec 15;176(3):705–714. doi: 10.1042/bj1760705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandor K., Pollak J. K. The mechanism of mitochondrial maturation in the liver of the perinatal rat. Biochem Soc Trans. 1976;4(6):1122–1124. doi: 10.1042/bst0041122. [DOI] [PubMed] [Google Scholar]
- Sutton R., Pollak J. K. Hormone-initiated maturation of rat liver mitochondria after birth. Biochem J. 1980 Jan 15;186(1):361–367. doi: 10.1042/bj1860361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutton R., Pollak J. K. Hormone-initiated maturation of rat liver mitochondria after birth. Biochem J. 1980 Jan 15;186(1):361–367. doi: 10.1042/bj1860361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutton R., Pollak J. K. The increasing adenine nucleotide concentration and the maturation of rat liver mitochondria during neonatal development. Differentiation. 1978 Nov 15;12(1):15–21. doi: 10.1111/j.1432-0436.1979.tb00985.x. [DOI] [PubMed] [Google Scholar]
- Ureta T., Bravo R., Babul J. Rat liver hexokinases during development. Enzyme. 1975;20(6):334–348. doi: 10.1159/000458958. [DOI] [PubMed] [Google Scholar]
- Vignais P. V. Molecular and physiological aspects of adenine nucleotide transport in mitochondria. Biochim Biophys Acta. 1976 Apr 30;456(1):1–38. doi: 10.1016/0304-4173(76)90007-0. [DOI] [PubMed] [Google Scholar]