Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Oct 15;192(1):183–190. doi: 10.1042/bj1920183

Effects of ionophores and metabolic inhibitors on the mitochondrial membrane potential within isolated hepatocytes as measured with the safranine method.

K E Akerman, J O Järvisalo
PMCID: PMC1162321  PMID: 7305896

Abstract

A difference spectrum with a peak of absorbance at 526nm appears slowly upon addition of valinomycin or KCN in combination with oligomycin to a hepatocyte suspension in the presence of safranine. When the cells are incubated at 37 degrees C in a medium containing safranine, a slow decrease in the absorbance occurs at the wavelength pair 524-484 nm. The change in absorbance is completed within 20-30 min after additions of cells to a medium containing safranine. At this time the safranine concentration of the outer medium is considerably decreased. The safranine signal is completely reversed by valinomycin, carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone or KCN in combination with oligomycin. None of these treatments have any immediate effect on cellular ATP concentrations or the 36Cl- equilibrium potential across the plasma membrane. In the presence of iodoacetate a slow reversal of the trace can be induced upon addition of KCN, but not of oligomycin alone. Rotenone, in combination with oligomycin, does not reverse the safranine signal except when both KF and iodoacetate are present, in which case a slow reversal is seen. A subsequent addition of duroquinone brings back the signal to the same level as in the presence of rotenone alone. The results indicate that the spectral response of safranine in the presence of isolated hepatocytes is a result of a slow penetration of safranine into intracellular mitochondria, where aggregation of safranine molecules occurs as a response to the mitochondrial membrane potential.

Full text

PDF
183

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerman K. E. Qualitative measurements of the mitochondrial membrane potential in situ in Ehrlich ascites tumour cells using the safranine method. Biochim Biophys Acta. 1979 May 9;546(2):341–347. doi: 10.1016/0005-2728(79)90051-3. [DOI] [PubMed] [Google Scholar]
  2. Akerman K. E., Saris N. E. Stacking of safranine in liposomes during valinomycin-induced efflux of potassium ions. Biochim Biophys Acta. 1976 Apr 5;426(4):624–629. doi: 10.1016/0005-2736(76)90126-7. [DOI] [PubMed] [Google Scholar]
  3. Akerman K. E., Wikström M. K. Safranine as a probe of the mitochondrial membrane potential. FEBS Lett. 1976 Oct 1;68(2):191–197. doi: 10.1016/0014-5793(76)80434-6. [DOI] [PubMed] [Google Scholar]
  4. Brand M. D., Harper W. G., Nicholls D. G., Ingledew W. J. Unequal charge separation by different coupling spans of the mitochondrial electron transport chain. FEBS Lett. 1978 Nov 1;95(1):125–129. doi: 10.1016/0014-5793(78)80066-0. [DOI] [PubMed] [Google Scholar]
  5. Burchkhardt G. Non-linear relationship between fluorescence and membrane potential. Biochim Biophys Acta. 1977 Jul 14;468(2):227–237. doi: 10.1016/0005-2736(77)90116-x. [DOI] [PubMed] [Google Scholar]
  6. Colnna R., Massari S., Azzone G. F. The problem of cation-binding sites in the energized membrane of intact mitochondria. Eur J Biochem. 1973 May 2;34(3):577–585. doi: 10.1111/j.1432-1033.1973.tb02798.x. [DOI] [PubMed] [Google Scholar]
  7. DALLNER G., ERNSTER L. Abolition of the crabtree effect in Ehrlich ascites tumor cells by vitamin K-3. Exp Cell Res. 1962 Aug;27:368–372. doi: 10.1016/0014-4827(62)90249-5. [DOI] [PubMed] [Google Scholar]
  8. Davis E. J., Bremer J., Akerman K. E. Thermodynamic aspects of translocation of reducing equivalents by mitochondria. J Biol Chem. 1980 Mar 25;255(6):2277–2283. [PubMed] [Google Scholar]
  9. Demetrakopoulos G. E., Linn B., Amos H. Rapid loss of ATP by tumor cells deprived of glucose: contrast to normal cells. Biochem Biophys Res Commun. 1978 Jun 14;82(3):787–794. doi: 10.1016/0006-291x(78)90851-3. [DOI] [PubMed] [Google Scholar]
  10. Deutsch C., Erecińska M., Werrlein R., Silver I. A. Cellular energy metabolism, trans-plasma and trans-mitochondrial membrane potentials, and pH gradients in mouse neuroblastoma. Proc Natl Acad Sci U S A. 1979 May;76(5):2175–2179. doi: 10.1073/pnas.76.5.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. ESTABROOK R. W., SACKTOR B. alpha-Glycerophosphate oxidase of flight muscle mitochondria. J Biol Chem. 1958 Oct;233(4):1014–1019. [PubMed] [Google Scholar]
  12. Gordon E. E., Ernster L., Dallner G. Intracellular hydrogen transport in Ehrlich ascites tumor cells. Cancer Res. 1967 Aug;27(8):1372–1377. [PubMed] [Google Scholar]
  13. Hoek J. B., Nicholls D. G., Williamson J. R. Determination of the mitochondrial protonmotive force in isolated hepatocytes. J Biol Chem. 1980 Feb 25;255(4):1458–1464. [PubMed] [Google Scholar]
  14. Laris P. C., Pershadsingh H. A., Johnstone R. M. Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye. Biochim Biophys Acta. 1976 Jun 17;436(2):475–488. doi: 10.1016/0005-2736(76)90209-1. [DOI] [PubMed] [Google Scholar]
  15. Mitchell P., Moyle J. Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. Eur J Biochem. 1969 Feb;7(4):471–484. doi: 10.1111/j.1432-1033.1969.tb19633.x. [DOI] [PubMed] [Google Scholar]
  16. Moldéus P., Högberg J., Orrenius S. Isolation and use of liver cells. Methods Enzymol. 1978;52:60–71. doi: 10.1016/s0076-6879(78)52006-5. [DOI] [PubMed] [Google Scholar]
  17. Nicholls D. G. The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem. 1974 Dec 16;50(1):305–315. doi: 10.1111/j.1432-1033.1974.tb03899.x. [DOI] [PubMed] [Google Scholar]
  18. Rottenberg H. The mechanism of energy-dependent ion transport in mitochondria. J Membr Biol. 1973;11(2):117–137. doi: 10.1007/BF01869816. [DOI] [PubMed] [Google Scholar]
  19. Scott I. D., Nicholls D. G. Energy transduction in intact synaptosomes. Influence of plasma-membrane depolarization on the respiration and membrane potential of internal mitochondria determined in situ. Biochem J. 1980 Jan 15;186(1):21–33. doi: 10.1042/bj1860021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Scott I. D., Nicholls D. G. The estimation of the electrical potential across the inner membrane of mitochondria within intact synaptosomes [proceedings]. Biochem Soc Trans. 1979 Oct;7(5):969–970. doi: 10.1042/bst0070969. [DOI] [PubMed] [Google Scholar]
  21. Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
  22. Seglen P. O. Preparation of rat liver cells. II. Effects of ions and chelators on tissue dispersion. Exp Cell Res. 1973 Jan;76(1):25–30. doi: 10.1016/0014-4827(73)90414-x. [DOI] [PubMed] [Google Scholar]
  23. Sims P. J., Waggoner A. S., Wang C. H., Hoffman J. F. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry. 1974 Jul 30;13(16):3315–3330. doi: 10.1021/bi00713a022. [DOI] [PubMed] [Google Scholar]
  24. Slater E. C. Mechanism of oxidative phosphorylation. Annu Rev Biochem. 1977;46:1015–1026. doi: 10.1146/annurev.bi.46.070177.005055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Waggoner A. S., Wang C. H., Tolles R. L. Mechanism of potential-dependent light absorption changes of lipid bilayer membranes in the presence of cyanine and oxonol dyes. J Membr Biol. 1977 May 6;33(1-2):109–140. doi: 10.1007/BF01869513. [DOI] [PubMed] [Google Scholar]
  26. Waggoner A. Optical probes of membrane potential. J Membr Biol. 1976 Jun 30;27(4):317–334. doi: 10.1007/BF01869143. [DOI] [PubMed] [Google Scholar]
  27. Wielburski A., Nelson B. D. Effects of K+ diffusion potentials on duroquinol-cytochrome c reductase activity catalyzed by complex III incorporated into liposomes. FEBS Lett. 1978 Sep 1;93(1):69–72. doi: 10.1016/0014-5793(78)80807-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES