Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Oct 15;192(1):355–359. doi: 10.1042/bj1920355

Rat embryonic and foetal erythrocytes. High 2,3-bisphosphoglycerate and ATP and low oxygen affinity in vitro for nucleated embryonic cells.

J G Gilman
PMCID: PMC1162341  PMID: 7305907

Abstract

Embryonic nucleated red cells of the rat have high ATP and 2,3-bisphosphoglycerate and relatively low oxygen affinity. During foetal life they are replaced by large non-nucleated red cells with high ATP, low bisphosphoglycerate and high oxygen affinity. After birth, small non-nucleated red cells with high bisphosphoglycerate and low oxygen affinity rapidly predominate.

Full text

PDF
355

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer C., Tamm R., Petschow D., Bartels R., Bartels H. Oxygen affinity and allosteric effects of embryonic mouse haemolglobins. Nature. 1975 Sep 25;257(5524):333–334. doi: 10.1038/257333a0. [DOI] [PubMed] [Google Scholar]
  2. Brewer G., Gilman J., Noble N., Crews V. Association in Long-Evans hooded rats of red cell 2,3-diphosphoglycerate levels with hemoglobin types. Biochem Genet. 1978 Aug;16(7-8):695–707. doi: 10.1007/BF00484727. [DOI] [PubMed] [Google Scholar]
  3. Bunn H. F. Differences in the interaction of 2,3-diphosphoglycerate with certain mammalian hemoglobins. Science. 1971 Jun 4;172(3987):1049–1050. doi: 10.1126/science.172.3987.1049. [DOI] [PubMed] [Google Scholar]
  4. Greengard O., Federman M., Knox W. E. Cytomorphometry of developing rat liver and its application to enzymic differentiation. J Cell Biol. 1972 Feb;52(2):261–272. doi: 10.1083/jcb.52.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hickey T. M., Uddin D. E., Kiesow L. A. Measurement of Erythrocyte 2,3-diphosphoglycerate with a centrifugal analyzer. Clin Chem. 1979 Jul;25(7):1314–1317. [PubMed] [Google Scholar]
  6. Huehns E. R., Faroqui A. M. Oxygen dissociation properties of human embryonic red cells. Nature. 1975 Mar 27;254(5498):335–337. doi: 10.1038/254335a0. [DOI] [PubMed] [Google Scholar]
  7. Isaacks R. E., Harkness D. R., Froeman G. A., Goldman P. H., Adler J. L., Sussman S. A., Roth S. Studies on avian erythrocyte metabolism--II. Relationship between the major phosphorylated metabolic intermediates and oxygen affinity of whole blood in chick embryos and chicks. Comp Biochem Physiol A Comp Physiol. 1976;53(2):151–156. doi: 10.1016/s0300-9629(76)80046-1. [DOI] [PubMed] [Google Scholar]
  8. Jelkmann W., Bauer C. Oxygen affinity and phosphate compounds of red blood cells during intrauterine development of rabbits. Pflugers Arch. 1977 Dec 12;372(2):149–156. doi: 10.1007/BF00585329. [DOI] [PubMed] [Google Scholar]
  9. Kilmartin J. V., Rossi-Bernardi L. The binding of carbon dioxide by horse haemoglobin. Biochem J. 1971 Aug;124(1):31–45. doi: 10.1042/bj1240031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kim H. D., Duhm J. Postnatal decrease in the oxygen affinity of pig blood induced by red cell 2,3-DPG. Am J Physiol. 1974 Apr;226(4):1001–1006. doi: 10.1152/ajplegacy.1974.226.4.1001. [DOI] [PubMed] [Google Scholar]
  11. Kitchen H., Brett I. Embryonic and fetal hemoglobin in animals. Ann N Y Acad Sci. 1974 Nov 29;241(0):653–671. doi: 10.1111/j.1749-6632.1974.tb21921.x. [DOI] [PubMed] [Google Scholar]
  12. LAMPRECHT W., TRAUTSCHOLD I. Nachweis eines direkten Insulineffektes auf den Kohlenhydratstoffwechsel der Leber. Hoppe Seylers Z Physiol Chem. 1958;311(4-6):245–255. [PubMed] [Google Scholar]
  13. Lucarelli G., Porcellini A., Carnevali C., Carmena A., Stohlman F., Jr Fetal and neonatal erythropoiesis. Ann N Y Acad Sci. 1968 Mar 29;149(1):544–559. doi: 10.1111/j.1749-6632.1968.tb15194.x. [DOI] [PubMed] [Google Scholar]
  14. Oswald B., Dassler G. Die Konzentration von Nukleotiden und anderen säurelöslichen P-Verbindungen im Blut der Ratte während der Erythrozytenreifung und -alterung. Acta Biol Med Ger. 1967;18(2):163–175. [PubMed] [Google Scholar]
  15. Stein S., Cherian M. G., Mazur A. Preparation and properties of six rat hemoglobins. Nonuniform biosynthesis in marrow erythroid cells. J Biol Chem. 1971 Sep 10;246(17):5287–5293. [PubMed] [Google Scholar]
  16. Trávnícková E., Sulc K. Effect of repeated blood loss on haemoglobin synthesis in young rats. Physiol Bohemoslov. 1970;19(3):243–250. [PubMed] [Google Scholar]
  17. Valet G., Metzger H., Kachel V., Ruhenstroth-Bauer G. Der Nachweis verschiedener Erythrozytenpopulationen bei der Ratte. Blut. 1972 Jan;24(1):42–53. doi: 10.1007/BF01633141. [DOI] [PubMed] [Google Scholar]
  18. Van Kampen E. J., Zijlstra W. G. Determination of hemoglobin and its derivatives. Adv Clin Chem. 1965;8:141–187. doi: 10.1016/s0065-2423(08)60414-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES