Abstract
Background
Protein quality control (PQC) is critical for maintaining sarcomere structure and function in cardiac myocytes, and mutations in PQC pathway proteins, such as CRYAB (arginine to glycine at position 120, R120G) and BAG3 (proline to lysine at position 209, P209L) induce protein aggregate pathology with cardiomyopathy in humans. Novel observations in yeast and mammalian cells demonstrate mitochondrial uptake of cytosolic protein aggregates. We hypothesized that mitochondrial uptake of cytosolic protein aggregates and their removal by mitophagy, a lysosomal degradative pathway essential for myocardial homeostasis, facilitates cytosolic protein quality control in cardiac myocytes.
Methods
Mice with inducible cardiac myocyte specific ablation of TRAF2 (TRAF2icKO), which impairs mitophagy, were assessed for protein aggregates with biochemical fractionation and super-resolution imaging in comparison to floxed controls. Induced pluripotent stem cell (iPSC)-derived cardiac myocytes with R120G knock-in to the CRYAB locus were assessed for localization of the CRYAB protein. Transgenic mice expressing R120G CRYAB protein (R120G-TG) were subjected to both TRAF2 gain-of-function (with AAV9-cardiac Troponin T promoter-driven TRAF2 transduction) and TRAF2 loss-of-function (with tamoxifen-inducible ablation of one Traf2 allele) in cardiac myocytes to determine the effect of mitophagy modulation on cardiac structure, function, and protein aggregate pathology.
Results
Cardiomyocyte-specific ablation of TRAF2 results accumulation of mitochondrial and cytosolic protein aggregates and DESMIN mis-localization to protein aggregates. Isolated mitochondria take up cardiomyopathy-associated aggregate-prone cytosolic chaperone proteins, namely arginine to glycine (R120G) CRYAB mutant and proline to lysine (P209L) BAG3 mutant. R120G-CRYAB mutant protein increasingly localizes to mitochondria in human and mouse cardiomyocytes. R120G-TG mice demonstrate upregulation of TRAF2 in the mitochondrial fraction with increased mitophagy as compared with wild type. Adult-onset inducible haplo-insufficiency of TRAF2 resulted in accelerated mortality, impaired left ventricular systolic function and increased protein aggregates in R120G-TG mice as compared with controls. Conversely, AAV9-mediated TRAF2 transduction in R120G-TG mice reduced mortality and attenuated left ventricular systolic dysfunction, with reduced protein aggregates and restoration of normal localization of DESMIN, a cytosolic scaffolding protein chaperoned by CRYAB, as compared with control AAV9-GFP group.
Conclusions
TRAF2-mediated mitophagy in cardiac myocytes facilitates removal of cytosolic protein aggregates and can be stimulated to ameliorate proteotoxic cardiomyopathy.
Full Text Availability
The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.