Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Nov 28:2024.11.25.625292. [Version 1] doi: 10.1101/2024.11.25.625292

Rapid enzymatic assay for antiretroviral drug monitoring using CRISPR-Cas12a enabled readout

Maya A Singh, Megan M Chang, Qin Wang, Catherine Rodgers, Barry R Lutz, Ayokunle O Olanrewaju
PMCID: PMC11623613  PMID: 39651213

Abstract

Maintaining efficacy of human immunodeficiency virus (HIV) medications is challenging among children because of dosing difficulties, the limited number of approved drugs, and low rates of medication adherence. Drug level feedback (DLF) can support dose optimization and timely interventions to prevent treatment failure, but current tests are heavily instrumented and centralized. We developed the REverse-transcriptase ACTivity-crispR (REACTR) assay for rapid measurement of HIV drugs based on the extent of DNA synthesis by HIV reverse transcriptase. CRISPR-Cas enzymes bind to synthesized DNA, triggering collateral cleavage of quenched reporters and generating fluorescence. We measured azidothymidine triphosphate (AZT-TP), a key drug in pediatric HIV treatment, and investigated the impact of assay time and DNA template length on REACTR’s sensitivity. REACTR selectively measured clinically relevant AZT-TP concentrations in the presence of genomic DNA and peripheral blood mononuclear cell lysate. REACTR has the potential to enable rapid point-of-care HIV DLF to improve pediatric HIV care.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES