Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Nov 28:2024.11.25.625306. [Version 1] doi: 10.1101/2024.11.25.625306

SMAC mimetics induce human macrophages to phagocytose live cancer cells

Samantha Y Liu, Max Hulsman, Philipp Leyendecker, Eugena Chang, Katherine A Donovan, Fabian Strobel, James Dougan, Eric S Fischer, Michael Dougan, Stephanie K Dougan, Li Qiang
PMCID: PMC11623637  PMID: 39651304

Abstract

Macrophages engulf apoptotic bodies and cellular debris as part of homeostasis, but they can also phagocytose live cells such as aged red blood cells. Pharmacologic reprogramming with the SMAC mimetic LCL161 in combination with T cell-derived cytokines can induce macrophages to phagocytose live cancer cells in mouse models. Here we extend these findings to encompass a wide range of monovalent and bivalent SMAC mimetic compounds, demonstrating that live cell phagocytosis is a class effect of these agents. We demonstrate robust phagocytosis of live pancreatic and breast cancer cells by primary human macrophages across a range of healthy donors. Unlike mouse macrophages where combination of SMAC mimetics with lymphotoxin enhanced phagocytosis, human macrophages were more efficiently polarized to phagocytose live cells by the combination of SMAC mimetics and IFNψ. We profiled phagocytic macrophages by transcriptional and proteomic methodologies, uncovering a positive feedback loop of autocrine TNFα production.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES