Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Nov 15;192(2):733–740. doi: 10.1042/bj1920733

Synthesis of apoprotein B of very low density lipoprotein in embryonic-chick liver. Development of responsiveness of oestrogen.

S A Nadin-Davis, C B Lazier, F Capony, D L Williams
PMCID: PMC1162391  PMID: 7236235

Abstract

The influence of exogenous oestrogen on the rate of synthesis of the apoprotein B of very-low-density lipoprotein by embryonic chick liver has been examined at various stages of development. Significant synthesis of apoprotein B was found in the absence of hormone treatment as early as day 6 of egg incubation. This basal level of apoprotein B synthesis varied from 2.5--6% of total protein synthesis. Embryos at day 10 or earlier treated with oestradiol exhibited no increase in the basal level of apoprotein B synthesis. Embryos at day 11 responded to oestradiol slightly and, from days 12 to 20, oestrogen treatment raised the relative rate of apoprotein B synthesis significantly above basal values: the maximal rate was about 16% of total protein synthesis. The anti-oestrogen tamoxifen citrate abolished the hormone-induced increase in apoprotein B synthesis and was not itself oestrogenic. The basal level of apoprotein B production was not sensitive to tamoxifen citrate, either in relatively early or in later stages of development. The basal level of apoprotein B synthesis, therefore, is oestrogen-independent and under developmental control distinct from the hormone-sensitive synthesis. The ontogeny of oestrogen-responsiveness of apoprotein B production appears to parallel the acquisition of the hepatic oestrogen-receptor system [Lazier (1978) Biochem. J. 174, 143--152].

Full text

PDF
733

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews G. K., Teng C. S. Studies on sex-organ development. Prenatal effect of oestrogenic hormone on tubular-gland cell morphogenesis and ovalbumin-gene expression in the chick Müllerian duct. Biochem J. 1979 Aug 15;182(2):271–286. doi: 10.1042/bj1820271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Capony F., Williams D. L. Apolipoprotein B of avian very low density lipoprotein: characteristics of its regulation in nonstimulated and estrogen-stimulated rooster. Biochemistry. 1980 May 13;19(10):2219–2226. doi: 10.1021/bi00551a035. [DOI] [PubMed] [Google Scholar]
  3. Chan L., Jackson R. L., Means A. R. Regulation of lipoprotein synthesis. Studies on the molecular mechanisms of lipoprotein synthesis and their regulation by estrogen in the cockerel. Circ Res. 1978 Aug;43(2):209–217. doi: 10.1161/01.res.43.2.209. [DOI] [PubMed] [Google Scholar]
  4. Chan L., Jackson R. L., O'Malley B. W., Means A. R. Synthesis of very low density lipoproteins in the cockerel. Effects of estrogen. J Clin Invest. 1976 Aug;58(2):368–379. doi: 10.1172/JCI108481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chan L., O'Malley B. W. Mechanism of action of the sex steroid hormones (first of three parts). N Engl J Med. 1976 Jun 10;294(24):1322–1328. doi: 10.1056/NEJM197606102942405. [DOI] [PubMed] [Google Scholar]
  6. Clagett C. O., Buss E. G., Saylor E. M., Girsh S. J. The nature of the biochemical lesion in avian renal riboflavinuria. 6. Hormone induction of the riboflavin-binding protein in roosters and young chicks. Poult Sci. 1970 Nov;49(6):1468–1472. doi: 10.3382/ps.0491468. [DOI] [PubMed] [Google Scholar]
  7. Deeley R. G., Gordon J. I., Burns A. T., Mullinix K. P., Binastein M., Goldberg R. F. Primary activation of the vitellogenin gene in the rooster. J Biol Chem. 1977 Nov 25;252(22):8310–8319. [PubMed] [Google Scholar]
  8. Gorski J., Gannon F. Current models of steroid hormone action: a critique. Annu Rev Physiol. 1976;38:425–450. doi: 10.1146/annurev.ph.38.030176.002233. [DOI] [PubMed] [Google Scholar]
  9. Gschwendt M. Estrogen binding sitesin the embryonic chicken liver. FEBS Lett. 1977 Mar 15;75(1):272–276. doi: 10.1016/0014-5793(77)80101-4. [DOI] [PubMed] [Google Scholar]
  10. Gschwendt M., Kittstein W. A cytoplasmic high affinity estrogen-binding protein in the embryonic chicken liver. Eur J Biochem. 1977 Nov 1;80(2):461–468. doi: 10.1111/j.1432-1033.1977.tb11901.x. [DOI] [PubMed] [Google Scholar]
  11. Jackson R. L., Lin H. Y., Chan L., Means A. R. Amino acid sequence of a major apoprotein from hen plasma very low density lipoproteins. J Biol Chem. 1977 Jan 10;252(1):250–253. [PubMed] [Google Scholar]
  12. King C. R., Udell D. S., Deeley R. G. Characterization of the estrogen-responsive domain of avian liver and cloning of double-stranded cDNA derived from estrogen-inducible RNA species. J Biol Chem. 1979 Jul 25;254(14):6781–6786. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lazier C. B. Ontogeny of the vitellogenic response to oestradiol and of the soluble nuclear oestrogen receptor in embryonic-chick liver. Biochem J. 1978 Jul 15;174(1):143–152. doi: 10.1042/bj1740143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee D. C., McKnight G. S., Palmiter R. D. The action of estrogen and progesterone on the expression of the transferrin gene. A comparison of the response in chick liver and oviduct. J Biol Chem. 1978 May 25;253(10):3494–3503. [PubMed] [Google Scholar]
  16. Luskey K. L., Brown M. S., Goldstein J. L. Stimulation of the synthesis of very low density lipoproteins in rooster liver by estradiol. J Biol Chem. 1974 Sep 25;249(18):5939–5947. [PubMed] [Google Scholar]
  17. Murthy U. S., Adiga P. R. Oestrogen induction of riboflavin-binding protein in immature chicks. Nature of the secretory protein. Biochem J. 1978 Feb 15;170(2):331–335. doi: 10.1042/bj1700331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ohno T., Cozens P. J., Cato A. C., Jost J. P. Recombinant plasmids containing avian vitellogenin structural gene sequences derived from complementary DNA. Biochim Biophys Acta. 1980;606(1):34–46. doi: 10.1016/0005-2787(80)90095-7. [DOI] [PubMed] [Google Scholar]
  19. Royal A., Garapin A., Cami B., Perrin F., Mandel J. L., LeMeur M., Brégégègre F., Gannon F., LePennec J. P., Chambon P. The ovalbumin gene region: common features in the organisation of three genes expressed in chicken oviduct under hormonal control. Nature. 1979 May 10;279(5709):125–132. doi: 10.1038/279125a0. [DOI] [PubMed] [Google Scholar]
  20. Ryffel G. U. Synthesis of vitellogenin, an attractive model for investigating hormone-induced gene activation. Mol Cell Endocrinol. 1978 Dec;12(3):237–246. doi: 10.1016/0303-7207(78)90082-5. [DOI] [PubMed] [Google Scholar]
  21. Sutherland R., Mester J., Baulieu E. E. Tamoxifen is a potent "pure" anti-oestrogen in chick oviduct. Nature. 1977 Jun 2;267(5610):434–435. doi: 10.1038/267434a0. [DOI] [PubMed] [Google Scholar]
  22. Tata J. R., Smith D. F. Vitellogenesis: a versatile model for hormonal regulation of gene expression. Recent Prog Horm Res. 1979;35:47–95. doi: 10.1016/b978-0-12-571135-7.50006-0. [DOI] [PubMed] [Google Scholar]
  23. Teng C. S., Teng C. T. Studies on sex-organ development. Changes in chemical composition and oestradiol-binding capacity in chromatin during the differentiation of chick Müllerian ducts. Biochem J. 1978 Jun 15;172(3):361–370. doi: 10.1042/bj1720361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Teng C. S., Teng C. T. Studies on sex-organ development. Ontogeny of cytoplasmic oestrogen receptor in chick Müllerian duct. Biochem J. 1975 Aug;150(2):191–194. doi: 10.1042/bj1500191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Teng C. S., Teng C. T. Study on sex-organ development. Oestrogen-receptor translocation in the developing chick Müllerian duct. Biochem J. 1976 Jan 15;154(1):1–9. doi: 10.1042/bj1540001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wahli W., Dawid I. B., Wyler T., Jaggi R. B., Weber R., Ryffel G. U. Vitellogenin in Xenopus laevis is encoded in a small family of genes. Cell. 1979 Mar;16(3):535–549. doi: 10.1016/0092-8674(79)90028-x. [DOI] [PubMed] [Google Scholar]
  27. Wang S. Y., Williams D. L. Identificiation, purification, and characterization of two distinct avian vitellogenins. Biochemistry. 1980 Apr 15;19(8):1557–1563. doi: 10.1021/bi00549a004. [DOI] [PubMed] [Google Scholar]
  28. Wieringa B., Roskam W., Arnberg A., van der Zwaag-Gerritsen J., Ab G., Gruber M. Purification of the mRNA for chicken very low density lipoproteinII and molecular cloning of its full-length double-stranded cDNA. Nucleic Acids Res. 1979 Dec 20;7(8):2147–2163. doi: 10.1093/nar/7.8.2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Williams D. L. Apoproteins of avian very low density lipoprotein: demonstration of a single high molecular weight apoprotein. Biochemistry. 1979 Mar 20;18(6):1056–1063. doi: 10.1021/bi00573a019. [DOI] [PubMed] [Google Scholar]
  30. Williams D. L., Wang S. Y., Capony F. Multiple response patterns to oestrogenic stimulation in the avian liver. J Steroid Biochem. 1979 Jul;11(1A):231–236. doi: 10.1016/0022-4731(79)90302-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES