Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Nov 15;192(2):741–751. doi: 10.1042/bj1920741

The regulation of pyruvate oxidation during membrane depolarization of rat brain synaptosomes.

W T Schaffer, M S Olson
PMCID: PMC1162392  PMID: 7236236

Abstract

Studies were performed to elucidate factors involved in the regulation of pyruvate dehydrogenase activity in rat brain synaptosomes during membrane depolarization. Addition of 24 mM-KCl to synaptosomes resulted in increases in rates of O2 consumption (90%) and [1-(14)C]pyruvate decarboxylation (85%) and in the active/total ratio of extractable pyruvate dehydrogenase (90--100%) within 10 s. Neither pyruvate (10 mM) nor dichloroacetate (10 mM) affected the activation state of the enzyme complex. Also, the activation state of pyruvate dehydrogenase was unaffected by addition of 1 mM-octanoate, L-(--)-carnitine, 3-hydroxybutyrate, glutamate, citrate, lactate, L-malate, acetate, acetaldehyde or ethanol. Removal of Ca2+ by using EGTA lowered the active/total ratio to about 70%, although the rate of O2 consumption and pyruvate decarboxylation was unaffected. Rates of pyruvate decarboxylation in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone in the presence and absence of NaF and EGTA demonstrated a linear correlation with changes in the activity of the enzyme complex. This observation indicated that a change in the activation state of pyruvate dehydrogenase from 90 to 100% active could result in a 27% increase in the rate of pyruvate decarboxylation. It is suggested that the pyruvate dehydrogenase complex is an important site for the regulation of substrate utilization in rat brain synaptosomes. Further, the phosphorylation/dephosphorylation system and direct feedback-inhibitory effects on the enzyme complex both play a significant role in rapidly adapting pyruvate decarboxylation to changes in the requirements for mitochondrial energy production.

Full text

PDF
741

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batenburg J. J., Olson M. S. The inactivation of pyruvate dehydrogenase by fatty acid in isolated rat liver mitochondria. Biochem Biophys Res Commun. 1975 Sep 16;66(2):533–540. doi: 10.1016/0006-291x(75)90543-4. [DOI] [PubMed] [Google Scholar]
  2. Booth R. F., Clark J. B. The control of pyruvate dehydrogenase in isolated brain mitochondria. J Neurochem. 1978 May;30(5):1003–1008. doi: 10.1111/j.1471-4159.1978.tb12392.x. [DOI] [PubMed] [Google Scholar]
  3. Chen R. F. Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem. 1967 Jan 25;242(2):173–181. [PubMed] [Google Scholar]
  4. DIAMOND M. C., KRECH D., ROSENZWEIG M. R. THE EFFECTS OF AN ENRICHED ENVIRONMENT ON THE HISTOLOGY OF THE RAT CEREBRAL CORTEX. J Comp Neurol. 1964 Aug;123:111–120. doi: 10.1002/cne.901230110. [DOI] [PubMed] [Google Scholar]
  5. Davis P. F., Pettit F. H., Reed L. J. Peptides derived from pyruvate dehydrogenase as substrates for pyruvate dehydrogenase kinase and phosphatase. Biochem Biophys Res Commun. 1977 Apr 11;75(3):541–549. doi: 10.1016/0006-291x(77)91506-6. [DOI] [PubMed] [Google Scholar]
  6. De Belleroche J. S., Bradford H. F. Metabolism of beds of mammalian cortical synaptosomes: response to depolarizing influences. J Neurochem. 1972 Mar;19(3):585–602. doi: 10.1111/j.1471-4159.1972.tb01376.x. [DOI] [PubMed] [Google Scholar]
  7. Dennis S. C., DeBuysere M., Scholz R., Olson M. S. Studies on the relationship between ketogenesis and pyruvate oxidation in isolated rat liver mitochondria. J Biol Chem. 1978 Apr 10;253(7):2229–2237. [PubMed] [Google Scholar]
  8. Denton R. M., Randle P. J., Martin B. R. Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase. Biochem J. 1972 Jun;128(1):161–163. doi: 10.1042/bj1280161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. ELLIOTT K. A., BILODEAU F. The influence of potassium on respiration and glycolysis by brain slices. Biochem J. 1962 Aug;84:421–428. doi: 10.1042/bj0840421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Evans J. R., Opie L. H., Renold A. E. Pyruvate metabolism in the perfused rat heart. Am J Physiol. 1963 Nov;205(5):971–976. doi: 10.1152/ajplegacy.1963.205.5.971. [DOI] [PubMed] [Google Scholar]
  11. Goddard G. A., Robinson J. D. Uptake and release of calcium by rat brain synaptosomes. Brain Res. 1976 Jul 9;110(2):331–350. doi: 10.1016/0006-8993(76)90406-6. [DOI] [PubMed] [Google Scholar]
  12. Hucho F., Randall D. D., Roche T. E., Burgett M. W., Pelley J. W., Reed L. J. -Keto acid dehydrogenase complexes. XVII. Kinetic and regulatory properties of pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase from bovine kidney and heart. Arch Biochem Biophys. 1972 Jul;151(1):328–340. doi: 10.1016/0003-9861(72)90504-8. [DOI] [PubMed] [Google Scholar]
  13. Jope R., Blass J. P. A comparison of the regulation of pyruvate dehydrogenase in mitochondria from rat brain and liver. Biochem J. 1975 Sep;150(3):397–403. doi: 10.1042/bj1500397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jope R., Blass J. P. The regulation of pyruvate dehydrogenase in brain in vivo. J Neurochem. 1976 Apr;26(4):709–714. doi: 10.1111/j.1471-4159.1976.tb04441.x. [DOI] [PubMed] [Google Scholar]
  15. KINI M. M., QUASTEL J. H. Carbohydrate--amino-acid inter-relations in brain cortex in vitro. Nature. 1959 Jul 25;184:252–256. doi: 10.1038/184252a0. [DOI] [PubMed] [Google Scholar]
  16. Katz B., Miledi R. A study of synaptic transmission in the absence of nerve impulses. J Physiol. 1967 Sep;192(2):407–436. doi: 10.1113/jphysiol.1967.sp008307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kovachich G. V., Haugaard N. Pyruvate dehydrogenase activation in rat brain cortical slices by elevated concentrations of external potassium ions. J Neurochem. 1977 May;28(5):923–927. doi: 10.1111/j.1471-4159.1977.tb10651.x. [DOI] [PubMed] [Google Scholar]
  18. Krueger B. K., Forn J., Greengard P. Depolarization-induced phosphorylation of specific proteins, mediated by calcium ion influx, in rat brain synaptosomes. J Biol Chem. 1977 Apr 25;252(8):2764–2773. [PubMed] [Google Scholar]
  19. Lai J. C., Walsh J. M., Dennis S. C., Clark J. B. Synaptic and non-synaptic mitochondria from rat brain: isolation and characterization. J Neurochem. 1977 Mar;28(3):625–631. doi: 10.1111/j.1471-4159.1977.tb10434.x. [DOI] [PubMed] [Google Scholar]
  20. Leiter A. B., Weinberg M., Isohashi F., Utter M. F. Relationshiop between phosphorylation and activity of pyruvate dehydrogenase in rat liver mitochondria and the absence of such a relationship for pyruvate carboxylase. J Biol Chem. 1978 Apr 25;253(8):2716–2723. [PubMed] [Google Scholar]
  21. Ngo T. T., Barbeau A. Regulation of brain pyruvate dehydrogenase multienzyme complex. Can J Neurol Sci. 1978 May;5(2):231–238. doi: 10.1017/s0317167100024598. [DOI] [PubMed] [Google Scholar]
  22. Nigo T. T., Barbeau A. Steady state kinetics of rat brain pyruvate dehydrogenase multienzyme complex. J Neurochem. 1978 Jul;31(1):69–75. doi: 10.1111/j.1471-4159.1978.tb12434.x. [DOI] [PubMed] [Google Scholar]
  23. Olson M. S., Dennis S. C., DeBuysere M. S., Padma A. The regulation of pyruvate dehydrogenase in the isolated perfused rat heart. J Biol Chem. 1978 Oct 25;253(20):7369–7375. [PubMed] [Google Scholar]
  24. Olson M. S., Dennis S. C., Routh C. A., Debuysere M. S. The regulation of pyruvate dehydrogenase by fatty acids in isolated rabbit heart mitochondria. Arch Biochem Biophys. 1978 Apr 15;187(1):121–131. doi: 10.1016/0003-9861(78)90014-0. [DOI] [PubMed] [Google Scholar]
  25. Pettit F. H., Pelley J. W., Reed L. J. Regulation of pyruvate dehydrogenase kinase and phosphatase by acetyl-CoA/CoA and NADH/NAD ratios. Biochem Biophys Res Commun. 1975 Jul 22;65(2):575–582. doi: 10.1016/s0006-291x(75)80185-9. [DOI] [PubMed] [Google Scholar]
  26. Pettit F. H., Roche T. E., Reed L. J. Function of calcium ions in pyruvate dehydrogenase phosphatase activity. Biochem Biophys Res Commun. 1972 Oct 17;49(2):563–571. doi: 10.1016/0006-291x(72)90448-2. [DOI] [PubMed] [Google Scholar]
  27. Pfeiffer D. R., Hutson S. M., Kauffman R. F., Lardy H. A. Some effects of ionophore A23187 on energy utilization and the distribution of cations and anions in mitochondria. Biochemistry. 1976 Jun 15;15(12):2690–2697. doi: 10.1021/bi00657a032. [DOI] [PubMed] [Google Scholar]
  28. Portenhauser R., Wieland O. Regulation of pyruvate dehydrogenase in mitochondria of rat liver. Eur J Biochem. 1972 Dec 4;31(2):308–314. doi: 10.1111/j.1432-1033.1972.tb02534.x. [DOI] [PubMed] [Google Scholar]
  29. Randle P. J., Sugden P. H., Kerbey A. L., Radcliffe P. M., Hutson N. J. Regulation of pyruvate oxidation and the conservation of glucose. Biochem Soc Symp. 1978;(43):47–67. [PubMed] [Google Scholar]
  30. Salganicoff L., Koeppe R. E. Subcellular distribution ot pyruvate carboxylase, diphosphopyridine nucleotide and triphosphopyridine nucleotide isocitrate dehydrogenases, and malate enzyme in rat brain. J Biol Chem. 1968 Jun 25;243(12):3416–3420. [PubMed] [Google Scholar]
  31. Scholz R., Olson M. S., Schwab A. J., Schwabe U., Noell C., Braun W. The effect of fatty acids on the regulation of pyruvate dehydrogenase in perfused rat liver. Eur J Biochem. 1978 May 16;86(2):519–530. doi: 10.1111/j.1432-1033.1978.tb12335.x. [DOI] [PubMed] [Google Scholar]
  32. Siess E., Wittmann J., Wieland O. Interconversion and kinetic properties of pyruvate dehydrogenase from brain. Hoppe Seylers Z Physiol Chem. 1971 Mar;352(3):447–452. doi: 10.1515/bchm2.1971.352.1.447. [DOI] [PubMed] [Google Scholar]
  33. Swanson P. D., Anderson L., Stahl W. L. Uptake of calcium ions by synaptosomes from rat brain. Biochim Biophys Acta. 1974 Jul 31;356(2):174–183. doi: 10.1016/0005-2736(74)90281-8. [DOI] [PubMed] [Google Scholar]
  34. Taylor S. I., Mukherjee C., Jungas R. L. Regulation of pyruvate dehydrogenase in isolated rat liver mitochondria. Effects of octanoate, oxidation-reduction state, and adenosine triphosphate to adenosine diphosphate ratio. J Biol Chem. 1975 Mar 25;250(6):2028–2035. [PubMed] [Google Scholar]
  35. Walajtys E. I., Gottesman D. P., Williamson J. R. Regulation of pyruvate dehydrogenase in rat liver mitochondria by phosphorylation-dephosphorylation. J Biol Chem. 1974 Mar 25;249(6):1857–1865. [PubMed] [Google Scholar]
  36. Warren J. C., Carr D. O., Grisolia S. Effect of cofactors, oestrogens and magnesium ions on the activity and stability of human glutamate dehydrogenase. Biochem J. 1964 Nov;93(2):409–419. doi: 10.1042/bj0930409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Whitehouse S., Cooper R. H., Randle P. J. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J. 1974 Sep;141(3):761–774. doi: 10.1042/bj1410761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wieland O., Funcke H. v., Löffler G. Interconversion of pyruvate dehydrogenase in rat heart muscle upon perfusion with fatty acids or ketone bodies. FEBS Lett. 1971 Jul 1;15(4):295–298. doi: 10.1016/0014-5793(71)80641-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES