Abstract
1. The distribution of Pi between mitochondria and suspending medium during uncoupler-stimulated hydrolysis of ATP by rat liver mitochondria [Tyler (1969) Biochem. J. 111, 665–678] has been reinvestigated, by using either mersalyl or N-ethylmaleimide as inhibitors of Pi transport and either buffered sucrose/EDTA or LiCl/EGTA solutions as suspending medium. More than 75% of the total Pi liberated was retained in mitochondria treated with either inhibitor at all ATP concentrations tested (0.2–2.5mm). With low ATP concentrations and mersalyl-treated mitochondria incubated in sucrose/EDTA, virtually all the Pi liberated was retained in the mitochondria. 2. Larger amounts of Pi appeared in the suspending medium during ATPase activity, despite the presence of N-ethylmaleimide, when LiCl/EGTA was used as suspending medium compared with sucrose/EDTA. Two sources of this Pi were identified: (a) a slow efflux of Pi from mitochondria to suspending medium despite the presence of N-ethylmaleimide; (b) a slow ATPase activity insensitive to carboxyatractyloside, which was stimulated by added Mg2+, partially inhibited by oligomycin or efrapeptin and strongly inhibited by EDTA. 3. It is concluded that liver mitochondria preparations contain two distinct forms of ATPase activity. The major activity is associated with coupled mitochondria of controlled permeability to adenine nucleotides and Pi and is stimulated strongly by uncoupling agents. The minor activity is associated with mitochondria freely permeable to adenine nucleotides and Pi, is unaffected by uncoupling agents and is activated by endogenous or added Mg2+. 4. When mitochondria treated with mersalyl were incubated in buffered sucrose solution, almost all the Pi liberated was recovered in the suspending medium, unless inhibitors of Pi-induced large-amplitude swelling such as EDTA, EGTA, antimycin, rotenone, nupercaine or Mg2+ were added. Thus the loss of the specific permeability properties of the mitochondrial inner membrane associated with large-amplitude swelling also influences the extent of Pi retention during ATPase activity. 5. The results confirm the previous conclusion (Tyler, 1969) that the Pi transporter provides the sole pathway for Pi efflux during uncoupler-stimulated ATP hydrolysis by mitochondria. It is concluded that more recent hypotheses concerning the influence of Mg2+ on mersalyl inhibition of the Pi transporter [Siliprandi, Toninello, Zoccaroto & Bindoli (1975) FEBS Lett. 51, 15–17] and a postulated role of the adenine nucleotide exchange carrier in Pi efflux [Reynafarje & Lehninger (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 4788–4792] are erroneous and should be discarded.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apps D. K., Schatz G. An adenosine triphosphatase isolated from chromaffin-granulate membranes is closely similar to F1-adenosine triphosphatase of mitochondria. Eur J Biochem. 1979 Oct 15;100(2):411–419. doi: 10.1111/j.1432-1033.1979.tb04184.x. [DOI] [PubMed] [Google Scholar]
- Azzi A., Azzone G. F. Swelling and shrinkage phenomena in liver mitochondria. I. Large amplitude swelling induced by inorganic phosphate and by ATP. Biochim Biophys Acta. 1965 Aug 24;105(2):253–264. doi: 10.1016/s0926-6593(65)80150-3. [DOI] [PubMed] [Google Scholar]
- Beechey R. B., Roberton A. M., Holloway C. T., Knight I. G. The properties of dicyclohexylcarbodiimide as an inhibitor of oxidative phosphorylation. Biochemistry. 1967 Dec;6(12):3867–3879. doi: 10.1021/bi00864a033. [DOI] [PubMed] [Google Scholar]
- Bjornstad P. Phospholipase activity in rat liver mitochondria studied by the use of endogenous substrates. J Lipid Res. 1966 Sep;7(5):612–620. [PubMed] [Google Scholar]
- Chappell J. B. Systems used for the transport of substrates into mitochondria. Br Med Bull. 1968 May;24(2):150–157. doi: 10.1093/oxfordjournals.bmb.a070618. [DOI] [PubMed] [Google Scholar]
- Chappell J. B. The effects of 2,4-dinitrophenol on mitochondrial oxidations. Biochem J. 1964 Feb;90(2):237–248. doi: 10.1042/bj0900237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Criss W. E. Rat liver adenosine triphosphate: adenosine monophosphate phosphotransferase activity. II. Subcellular localization of adenylate kinase isozymes. J Biol Chem. 1970 Dec 10;245(23):6352–6356. [PubMed] [Google Scholar]
- ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- Feldhau P., Fröhlich T., Goody R. S., Isakov M., Schirmer R. H. Synthetic inhibitors of adenylate kinases in the assays for ATPases and phosphokinases. Eur J Biochem. 1975 Sep 1;57(1):197–204. doi: 10.1111/j.1432-1033.1975.tb02291.x. [DOI] [PubMed] [Google Scholar]
- Fonyó A., Vignais P. V. Phosphate retention and release during ATP hydrolysis in liver mitochondria. FEBS Lett. 1979 Jun 15;102(2):301–305. doi: 10.1016/0014-5793(79)80023-x. [DOI] [PubMed] [Google Scholar]
- Goldschmidt D., Gaudemer Y., Gautheron D. C. Thiols related to mitochondrial ATPase and transports: unmasking upon conformational changes supported by the comparative effects of ethacrynate and dihydroethacrynate. Biochimie. 1976;58(6):713–722. doi: 10.1016/s0300-9084(76)80396-3. [DOI] [PubMed] [Google Scholar]
- Johnson R. N., Chappell J. B. The transport of inorganic phosphate by the mitochondrial dicarboxylate carrier. Biochem J. 1973 Jul;134(3):769–774. doi: 10.1042/bj1340769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIELLEY W. W., KIELLEY R. K. A specific adenosinetriphosphatase of liver mitochondria. J Biol Chem. 1953 Jan;200(1):213–222. [PubMed] [Google Scholar]
- Klingenberg M., Durand R., Guérin B. Analysis of the reactivity of SH-reagents with the mitochondrial phosphate carrier. Eur J Biochem. 1974 Feb 15;42(1):135–150. doi: 10.1111/j.1432-1033.1974.tb03323.x. [DOI] [PubMed] [Google Scholar]
- LARDY H. A., WELLMAN H. The catalytic effect of 2,4-dinitrophenol on adenosinetriphosphate hydrolysis by cell particles and soluble enzymes. J Biol Chem. 1953 Mar;201(1):357–370. [PubMed] [Google Scholar]
- LEHNINGER A. L. Water uptake and extrusion by mitochondria in relation to oxidative phosphorylation. Physiol Rev. 1962 Jul;42:467–517. doi: 10.1152/physrev.1962.42.3.467. [DOI] [PubMed] [Google Scholar]
- LaNoue K. F., Schoolwerth A. C. Metabolite transport in mitochondria. Annu Rev Biochem. 1979;48:871–922. doi: 10.1146/annurev.bi.48.070179.004255. [DOI] [PubMed] [Google Scholar]
- Leblanc P., Clauser H. Study of the mitochondrial phosphate carrier in the course of calcium phosphate accumulation: a requirement for Mg2+ and ADP of its sensitivity to thiol reagents. Biochim Biophys Acta. 1974 May 22;347(2):193–201. doi: 10.1016/0005-2728(74)90044-9. [DOI] [PubMed] [Google Scholar]
- MYERS D. K., SLATER E. C. The enzymic hydrolysis of adenosine triphosphate by liver mitochondria. I. Activities at different pH values. Biochem J. 1957 Dec;67(4):558–572. doi: 10.1042/bj0670558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell P., Moyle J. Respiratory-chain protonmotive stoicheiometry. Biochem Soc Trans. 1979 Oct;7(5):887–894. doi: 10.1042/bst0070887. [DOI] [PubMed] [Google Scholar]
- NOVIKOFF A. B., HECHT L., PODBER E., RYAN J. Phosphatases of rat liver. I. The dephosphorylation of adenosinetriphosphate. J Biol Chem. 1952 Jan;194(1):153–170. [PubMed] [Google Scholar]
- Reynafarje B., Lehninger A. L. An alternative membrane transport pathway for phosphate and adenine nucleotides in mitochondria and its possible function. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4788–4792. doi: 10.1073/pnas.75.10.4788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHNEIDER W. C. Biochemical constitution of mammalian mitochondria. J Histochem Cytochem. 1953 Jul;1(4):212–233. doi: 10.1177/1.4.212. [DOI] [PubMed] [Google Scholar]
- SCOTT R. L., GAMBLE J. L., Jr Effect of mercurial compounds on potassium binding by mitochondria. J Biol Chem. 1961 Feb;236:570–573. [PubMed] [Google Scholar]
- SIEKEVITZ P., LOW H., ERNSTER L., LINDBERG O. On a possible mechanism of the adenosinetriphosphatase of liver mitochondria. Biochim Biophys Acta. 1958 Aug;29(2):378–391. doi: 10.1016/0006-3002(58)90197-5. [DOI] [PubMed] [Google Scholar]
- Scarpa A., Lindsay J. G. Maintenance of energy-linked functions in rat-liver mitochondria aged in the presence of nupercaine. Eur J Biochem. 1972 Jun 9;27(3):401–407. doi: 10.1111/j.1432-1033.1972.tb01851.x. [DOI] [PubMed] [Google Scholar]
- Siliprandi D., Toninello A., Zoccarato F., Bindoli A. Phosphate transport across the mitochondrial membrane: the influence of thiol oxidation and of Mg++ on inhibition by mercurials. FEBS Lett. 1975 Mar 1;51(1):15–17. doi: 10.1016/0014-5793(75)80844-1. [DOI] [PubMed] [Google Scholar]
- Susa J. B., Lardy H. A. Antibiotics as tools for metabolic studies. XVIII. Inhibition of sodium- and potassium-dependent adenosine triphosphatase. Mol Pharmacol. 1975 Mar;11(2):166–173. [PubMed] [Google Scholar]
- Tyler D. D. Evidence of a phosphate-transporter system in the inner membrane of isolated mitochondria. Biochem J. 1969 Mar;111(5):665–678. doi: 10.1042/bj1110665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tyler D. D. Transport and oxidation of choline by liver mitochondria. Biochem J. 1977 Sep 15;166(3):571–581. doi: 10.1042/bj1660571. [DOI] [PMC free article] [PubMed] [Google Scholar]
