Skip to main content
Springer logoLink to Springer
. 2024 Dec 6;84(12):1264. doi: 10.1140/epjc/s10052-024-13244-0

Search for CP violation in D0KS0KS0 decays in proton–proton collisions at s=13TeV

CMS Collaboration287
PMCID: PMC11624237  PMID: 39651650

Abstract

A search is reported for charge-parity CP violation in D0KS0KS0 decays, using data collected in proton–proton collisions at s=13TeV recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6fb-1, which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays D+D0π+ and D-D¯0π-. The CP asymmetry in D0KS0KS0 is measured to be ACP(KS0KS0)=(6.2±3.0±0.2±0.8)%, where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the CP asymmetry in the D0KS0π+π- decay. This is the first CP asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state.

Introduction

The noninvariance of fundamental interactions under the combined charge-parity (CP) transformation is one of the necessary conditions for the generation of the observed baryon asymmetry in the universe [1]. In the standard model (SM), the CP symmetry violation originates from a single phase in the Cabibbo–Kobayashi–Maskawa (CKM) quark mixing matrix [2, 3]. Extensive studies of CP violation in weak interaction decays of strange and beauty mesons have been performed by many experiments, with all results to date being consistent with the predictions based on the CKM formalism [4]. However, the magnitude of CP violation in the SM appears to be insufficient to explain the matter–antimatter asymmetry observed in the universe [57], suggesting the existence of sources of CP violation beyond the SM. Charmed meson decays are the only meson decays involving an up-type quark where CP violation can be studied, and are complementary to strange and beauty meson decays. In contrast to the K and B systems, CP violation in charm mesons is severely suppressed by the Glashow–Iliopoulos–Maiani mechanism [8] and by the magnitude of the CKM elements [3]. Given the strong SM suppression, an observation of a significant CP violation in D meson decays may indicate a contribution from new physics, which can be different from those relevant for down-type quark systems. The first observation of CP violation in charm decays was recently reported by the LHCb Collaboration in a measurement of the CP asymmetry (ACP) difference between the D0K+K- and D0π+π- decays [9]. However, determining if this (or other) measurements of CP violation is an indication of new physics is hampered by large theoretical uncertainties associated with long-distance contributions and nonperturbative effects [10].

The D0KS0KS0 decay proceeds through the W boson exchange and penguin annihilation Feynman diagrams, some examples of which are shown in Fig. 1, which results in a relatively small branching fraction of (1.41±0.05)×10-4 [4]. In this figure and throughout this paper, charge-conjugate states are implied, unless otherwise indicated. Theoretical predictions indicate similar amplitudes and different phases for the two diagrams, which can result in CP violation in this channel as large as a few percent [1115] and therefore possibly within reach of current experiments.

Fig. 1.

Fig. 1

The decay of neutral charm meson to two neutral kaons: exchange (upper) and penguin annihilation (lower) diagrams

The CP asymmetry ACP, for the D0KS0KS0 decay, is defined as

ACP(KS0KS0)=Γ(D0KS0KS0)-Γ(D¯0KS0KS0)Γ(D0KS0KS0)+Γ(D¯0KS0KS0). 1

The current world average for the time-integrated CP asymmetry is ACP(KS0KS0)=(-1.9±1.1)% [4], which is dominated by results from the LHCb [16] and Belle [17] Collaborations.

This paper presents the first CP violation measurement by the CMS experiment in the charm sector. The flavor of the neutral D meson is determined from the pion charge found from reconstructing the decays D+D0π+ and D-D¯0π-. We measure the CP asymmetry difference, ΔACP, between the signal channel D0KS0KS0 and the reference channel D0KS0π+π-. The D0KS0π+π- CP asymmetry has been previously measured [18] and found to be consistent with zero, as expected since this decay is not CKM-suppressed. Therefore, a significant deviation of ΔACP from 0 would indicate CP violation in the D0KS0KS0 decay.

In proton–proton (pp) collision data, the number of D+ and D- decays (signal events, N) are measured, where both D0 and D¯0 are reconstructed in the KS0KS0 or KS0π+π- decay modes. The “raw” asymmetry between these numbers, ACPraw (defined in Eq. (2)), is different from the true asymmetry ACP, due to the slightly different production cross sections (σ) of D+ and D- mesons, as well as to a possible difference in the detection efficiency (ϵ) between D+ and D-. Because these three asymmetries are all small, the following relation can be written:

ACPACPraw-ACPpro-ACPdet,whereACPraw=N(D+D0π+)-N(D-D¯0π-)N(D+D0π+)+N(D-D¯0π-),ACPpro=σppD+X-σppD-XσppD+X+σppD-X,andACPdet=ϵ(D+D0π+)-ϵ(D-D¯0π-)ϵ(D+D0π+)+ϵ(D-D¯0π-), 2

where measuring the difference of ACP between the signal and reference channels, ACPpro (D± production asymmetry) and ACPdet (D± detection asymmetry) cancel out, as they do not depend on the final state (KS0KS0 or KS0π+π-):

ΔACPACP(KS0KS0)-ACP(KS0π+π-)=ACPraw(KS0KS0)-ACPraw(KS0π+π-). 3

The reference channel was chosen to be as similar as possible in kinematics, topology, and final-state signature to the signal channel, to ensure that the reconstruction efficiency asymmetries cancel in the measured difference of asymmetries, ΔACP.

The analysis uses proton–proton collisions data recorded by the CMS detector during the CERN LHC Run 2 in 2018, at s=13TeV. It utilizes the B parking data set [19, 20], collected with a set of single-muon triggers with different minimum thresholds on the muon transverse momentum (pT) and impact parameter with respect to the beamline. Different triggers were enabled depending on the instantaneous luminosity: as the luminosity decreased, less restrictive triggers were enabled, as allowed by the limited event rate to be processed by the data acquisition system and recorded on tape. The data set contains about 1.2×1010 events and corresponds to an integrated luminosity of 41.6fb-1. More details about this data set can be found in Ref. [19]. These triggers are intended to select events containing a semimuonic decay of a b hadron (or a semimuonic decay of c hadron that originated from a b-hadron decay). Since the trigger requires muons inconsistent with being produced in the primary interaction, most of such muons come from semileptonic decays of beauty hadrons, hence approximately 80% of the events in this sample include b hadrons [19, 20]. As beauty hadrons nearly always decay into charm hadrons, this data set also provides a rich sample of charm decays, making it suitable for CP violation studies in the charm sector.

The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6m internal diameter, providing a magnetic field of 3.8T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. The reconstructed decays used by this analysis contain five pions in the final state. Pions are measured by the silicon tracker whose setup during the 2018 LHC running period, when the data used in this paper were recorded, consisted of 1856 silicon pixel [21] and 15 148 silicon strip detector modules. For non-isolated particles with |η|<3 and 1<pT<10GeV, the track resolutions are typically 1.5% in pT and 20–75μm in the transverse impact parameter [22].

Events of interest are selected using a two-tiered trigger system. The first level, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100kHz within a fixed latency of 4μs  [23]. The second level, known as the high-level trigger, consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and further reduces the event rate before data storage [24].

A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [25].

Simulated event samples

The simulated event samples used in this analysis are generated with pythia 8.230 [26]. The pythia output is interfaced with evtgen  [27] 1.3.0, which simulates various b and c hadron decays. The underlying event is also modeled with pythia using the CP5 [28] tune. Final-state photon radiation is modeled with photos 3.61 [29]. Samples with inclusive decays B+D±(Dπ±)X, B0D±(Dπ±)X, and prompt D±Dπ± were generated. The events were then passed through a detailed Geant4-based simulation [30] of the CMS detector, followed by the trigger and reconstruction algorithms identical to those used for the collision data.

Reconstruction of charm meson decays

The reconstruction starts with finding KS0π+π- candidates as described in Ref. [31]. The two oppositely-charged pion tracks are fit to a common vertex that is required to have a χ2 fit probability Pvtx>1%. The dipion invariant mass must be within 20MeV of the world average value of the KS0 meson mass [4], corresponding to approximately three times the mass resolution.

In the signal channel, two KS0π+π- candidates are each fit again with kinematic constraints to the KS0 mass, and subsequently, the KS0 candidates are fitted as two virtual tracks to a common vertex, assumed to be the D0KS0KS0 decay vertex. The KS0KS0 invariant mass is required to be between 1.77 and 1.95GeV, and the vertex fit probability must exceed 1%. Both KS0 decay vertices have to be displaced in three-dimensional (3D) space by at least one standard deviation (s.d.) from the fitted KS0KS0 vertex, and the corresponding pointing angle (the angle between the particle momentum and the vector joining the production vertex with its decay vertex) for each KS0 candidate is required to be less than 90.

In the reference channel, after the single KS0 selection, two additional high-purity [32] and opposite-sign tracks with pT>0.6GeV (and at least one of them with pT>0.7GeV) are selected. The KS0π+π- combination is then fit to a common vertex, assumed to be the D0 decay vertex, which must have a Pvtx>5%, and an invariant mass between 1.823 and 1.908GeV, assuming charged-pion mass [4] for both tracks, which corresponds to approximately twice the mass resolution.

The primary vertex (PV) is selected from the reconstructed pp interaction vertices as the one with the smallest pointing angle of the D0 candidate. After the D0 reconstruction, an additional track is added to form the D+D0π+ or D-D¯0π- candidates. A two-object vertex fit is performed to reconstruct the D± decay vertex, which is required to have a Pvtx>1%. The D+ candidate invariant mass is determined from the refitted pion and D0 four-momenta and then corrected by subtracting the difference between the reconstructed D0 candidate mass and the world-average D0 mass, to remove the effect of the D0 detector mass resolution. The candidates are rejected if they are compatible with an incorrect decay topology that assumes negligible decay time of any of the KS0 candidates.

Final selection criteria

A mixture of different triggers with varying thresholds in the data set makes it challenging to properly model the kinematic distributions of charm mesons in the simulation. Therefore, an optimization of the selection criteria is done using the experimental data directly. A two-dimensional (2D) fit to the distribution of m(Dπ±) vs m(KS0KS0), similar to the one described below, is performed for the data (with the D+ and D- samples merged) while the selection criteria are varied. The variables used in the optimization include the candidate pT, η, Pvtx, distances between production and decay vertices for KS0 and D0 candidates divided by their corresponding uncertainties, and corresponding pointing angles. The optimal criteria were chosen as those which result in the smallest relative uncertainty on the fitted signal yield. Cross-validation was used to ensure there is no bias due to statistical fluctuations in the data, via randomly splitting the data into six equal sub-samples, finding optimal criteria using five of them and applying them to the last part. The procedure is repeated six times (each time leaving out a different part of the full data set) and results in six almost identical sets of selection criteria. The average value for each selection is taken as the final selection criteria, presented in Table 1.

Table 1.

Optimized selection criteria in the signal channel KS0KS0. The requirements on the KS0 candidates in the third and fourth lines are given first for the KS0 with larger pT, then for the KS0 with lower pT

Variable Requirement
|η| of the tagging pion from D±Dπ± <1.2
pT of the tagging pion from D±Dπ± >0.35GeV
pT(KS0) >2.2 and >1.0GeV
KS0 vertex displacement significance from the D0 vertex in xyz >7 and >9
D0 vertex displacement significance from the PV in xy >2
D0 vertex displacement significance from the PV in xyz >9
Pvtx(Dπ±) >5%
Pvtx(KS0KS0) >1%
Pvtx(π+π-) for KS0π+π- >1%
Angle between D0 momentum and displacement from PV in xyz <0.205rad
Angle between D0 momentum and displacement from PV in xy <0.237rad
Angle between D0 momentum and displacement from beamline in xy <0.237rad

Similar selection criteria are applied to the reference channel, to minimize the differences in kinematic distributions between the signal and the reference channels: the only adjustment is that the scalar sum of the pT of the two pions that are not from the KS0 decay in the reference channel must exceed 1GeV and the single KS0 candidate in the reference channel must satisfy the requirements applied to the high-pT KS0 candidate in the signal channel.

ACP measurement: reference channel

The signal and reference channels are found to have consistent η and ϕ distributions, but slightly different pT(D±) ones, and thus the detection and production asymmetries may not cancel out fully in the ΔACP measurement. In order to suppress this effect, the reference channel data are reweighted to match the pT(D±) distribution found in the signal channel, before splitting the samples by the pion charge.

To extract the raw CP asymmetry, a simultaneous binned extended maximum likelihood fit is performed on the invariant mass distributions m(Dπ±) of weighted D+ and D- candidates. The signal in x=m(Dπ±) is fitted with the SU Johnson transformation of the normal distribution [33], with the shape parameters shared between the D+ and D- components while the signal yields are independent. The background is modeled with a modified threshold function (x-x0)α(1+ax), where x0 is the threshold value equal to the sum of the masses of D0 and π+, and α and a are floated in the fit and they are not shared between the D+ and the D- background model. The results of the fit to the m(Dπ±) distributions are presented in Fig. 2 and Table 2. The measured raw asymmetry is ACPraw(KS0π+π-)=(0.78±0.10)%, where the uncertainty is statistical only and accounts for the correlations found in the simultaneous fit.

Fig. 2.

Fig. 2

The D0π+ (left) and D¯0π- (right) invariant mass distributions for the KS0π+π- channel, with the result of the fit to both distributions

Table 2.

Results of the fit to the selected D+D0π+ and D-D¯0π- candidates, where D0(D¯0)KS0π+π-. The D± signal yields N given in the second column are used in the evaluation of ACPraw. The uncertainties are statistical only

Decay N χ2 with 100 bins
D+D0π+ 944800±3500 78
D-D¯0π- 930150±3400 93

ACP measurement: signal channel

To reduce the statistical uncertainty arising from the signal channel yield, which is the dominant uncertainty in the analysis, the signal extraction is performed using a 2D unbinned maximum likelihood fit performed simultaneously on the D+ and D- samples to the distribution of m(Dπ±) vs. m(KS0KS0). The fit function consists of the following components:

  • D0×D+, the signal component;

  • D0×bkg, for events containing genuine D0 and background pion combinations;

  • bkg×bkg, for the background in both dimensions,

where each component is a product of two one-dimensional (1D) functions. For the D± signal, the Johnson function is used with all signal shape parameters fixed to those found in the fit to the reference channel. This approach is verified to be reasonable using simulated event samples. The D0 signal is modeled with a sum of two Johnson functions, all parameters of which are fixed to values determined from the simulation, except for a single free parameter that is used to scale the width. The background in x=m(Dπ±) is modeled with the same function as in the reference channel. The background in y=m(KS0KS0) is described with an exponential function exp(βy), where β is floating in the fit, plus a Gaussian function with free parameters to describe the partially-reconstructed background from the Ds±KS0KS0π± decay producing an excess at about 1.83GeV in the KS0KS0 invariant mass distribution.

The projections of the data and the 2D fit on both axes are shown in Fig. 3; additional projections in sub-ranges are shown in Appendix A. The fit results are listed in Table 3. The measured raw asymmetry is ACPraw(KS0KS0)=(7.1±3.0)% and in combination with the results of Sect. 6 the ACP difference is measured to be ΔACP=(6.3±3.0)%, where the uncertainty is statistical only and accounts for the correlations found in the simultaneous fit.

Fig. 3.

Fig. 3

The invariant mass distributions for D+ candidates (left) and D- candidates (right), with the m(Dπ±) distributions in the upper row and the m(KS0KS0) distributions in the lower row. Projections of the simultaneous 2D fit are also shown

Table 3.

Results of the 2D fit to the selected D+D0π+ and D-D¯0π- candidates, where D0(D¯0)KS0KS0. The D± signal yields N given in the second column are used in the evaluation of ACPraw. The χ2 corresponds to the fit projection with 100 bins in the x=m(Dπ±) axis and 90 bins in the y=m(KS0KS0) axis, as shown in Fig 3. The uncertainties are statistical only

Decay N χ2 (x axis) χ2 (y axis)
D+D0π+ 1095±46 77 90
D-D¯0π- 0951±44 93 62

Systematic uncertainties

The measured difference in the asymmetries is largely insensitive to many systematic uncertainties that would affect a measurement of ACP in a single channel, such as the difficult-to-measure production and detection asymmetries that would need a dedicated calibration procedure.

Uncertainties related to the choice of the signal and background models are calculated separately using alternative models and assessing the observed variations in ΔACP.

In the baseline approach, the signal in the m(Dπ±) invariant mass distribution is modeled with the Johnson function [33]. As an alternative, we use a Johnson+Gaussian function with a common mean. Another alternative is a sum of two Crystal Ball functions [34]. For each case, the reference channel is fit as a first step, then the obtained shape parameters are fixed in the 2D fit to the signal channel. Other components of the 2D fit remain unchanged from the baseline fit. The largest deviation in ΔACP from the baseline value is taken as a systematic uncertainty.

The baseline signal function for the m(KS0KS0) invariant mass distribution is a sum of two Johnson functions. As an alternative, we use a Johnson+Gaussian function or a sum of two Crystal Ball functions. These variations have no effect on the fit of the reference channel, just on that of the signal channel. The largest deviation in ΔACP from the baseline value is taken as a systematic uncertainty.

The baseline background model in the x=m(Dπ±) distribution is (x-x0)α(1+ax). An alternative background model is obtained by changing the function multiplying the threshold function from a linear polynomial to an exponential function. The baseline background model in the m(KS0KS0) distribution is an exponential function and an exponential multiplied by a linear polynomial is used as an alternative. These variations are taken as independent systematic uncertainties.

In the signal channel fit, there is a contribution from the Ds±KS0KS0π± decay, which is modeled by a Gaussian with free parameters. As an alternative, we remove this reflection by restricting the fit range to be m(KS0KS0)>1.835GeV, and the deviation from the baseline is included as a systematic uncertainty.

To assess the systematic uncertainty related to the pT reweighting, we vary the parameters of the reweighting function within their uncertainties. As an alternative, we consider the weights depending on the pT of the low-momentum pion that is used for the flavor tagging instead of pT(D±). The largest change is taken as a systematic uncertainty related to the reweighting.

Differences in ACPpro and ACPdet between the two channels are expected to be reproduced by the simulation of the processes and the detector. Checking the reweighted reference channel and signal channel in simulation show that the pT-, η-, and ϕ-dependent asymmetries are consistent with zero as is the integrated value of (-0.13±0.34)%. Therefore, no systematic uncertainty is assessed.

If multiple candidates in the same event are removed by keeping only the one with the highest D± vertex fit probability, the resulting ΔACP changes negligibly and no corresponding systematic uncertainty is assigned. Pion charge misidentification was shown to have a negligible effect as well.

All systematic uncertainties described above are uncorrelated and summarized in Table 4 together with the total systematic uncertainty, calculated as the sum in quadrature of the different contributions.

Table 4.

Absolute systematic uncertainties in the measurement of ΔACP

Source Uncertainty (%)
m(Dπ±) signal model 0.10
m(Dπ±) background model 0.02
m(KS0KS0) signal model 0.04
m(KS0KS0) background model 0.02
m(KS0KS0) fit range 0.06
Reweighting 0.09
Total 0.16

Summary

A measurement of CP violation in D0 decays is reported, using proton–proton collision data collected at s=13TeV with a novel high-rate data stream (B parking). These data correspond to an integrated luminosity of 41.6fb-1 and include about 10 billion events containing beauty hadron decays. The difference in the CP asymmetries between D0KS0KS0 and D0KS0π+π- is measured to be:

ΔACPACP(KS0KS0)-ACP(KS0π+π-)=6.3±3.0(stat)±0.2(syst)%. 4

Using the world-average value of ACP(KS0π+π-)=(-0.1±0.8)% [4, 18, 35], we report the measurement

ACP(KS0KS0)=(6.2±3.0±0.2±0.8)%, 5

where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the CP asymmetry in the D0KS0π+π- decay. The measured value is consistent with no CP violation within 2.0 standard deviations. Likewise, it is consistent with the LHCb [16] and the Belle measurements [17] at the level of 2.7 and 1.8 standard deviations, respectively. Tabulated results are provided in the HEPData record for this analysis [36]. This is the first CMS search for CP violation in the charm sector, paving the way for future measurements with more data, using new techniques, and in other channels.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: SC (Armenia), BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); ERC PRG, RVTT3 and MoER TK202 (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); SRNSF (Georgia); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LMTLT (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK and TENMAK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 101115353, 101002207, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Science Committee, project no. 22rl-037 (Armenia); the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS”– be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010 and Fundamental Research Funds for the Central Universities (China); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Shota Rustaveli National Science Foundation, grant FR-22-985 (Georgia); the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe”– 390833306, and under project number 400140256 - GRK2497; the Hellenic Foundation for Research and Innovation (HFRI), Project Number 2288 (Greece); the Hungarian Academy of Sciences, the New National Excellence Program - ÚNKP, the NKFIH research grants K 131991, K 133046, K 138136, K 143460, K 143477, K 146913, K 146914, K 147048, 2020-2.2.1-ED-2021-00181, and TKP2021-NKTA-64 (Hungary); the Council of Science and Industrial Research, India; ICSC – National Research Center for High Performance Computing, Big Data and Quantum Computing and FAIR – Future Artificial Intelligence Research, funded by the NextGenerationEU program (Italy); the Latvian Council of Science; the Ministry of Education and Science, project no. 2022/WK/14, and the National Science Center, contracts Opus 2021/41/B/ST2/01369 and 2021/43/B/ST2/01552 (Poland); the Fundação para a Ciência e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; MCIN/AEI/10.13039/501100011033, ERDF “a way of making Europe”, and the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project, and the National Science, Research and Innovation Fund via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, grant B37G660013 (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

Appendix A: Additional projections of the 2D fit

Figures 4 and 5 show the projections of the 2D fit in the signal channel in subranges of the mass variables. The top and middle rows show 1D projections of the 2D fit on m(Dπ±) in ranges of m(KS0KS0): left sideband, region of Ds±KS0KS0π± contamination, signal region of KS0KS0, and right sideband. The lower three plots show 1D projections of the 2D fit on m(KS0KS0) in ranges of m(Dπ±): left sideband, signal region of Dπ±, and right sideband.

Fig. 4.

Fig. 4

Results of the 2D fit to the m(Dπ±)×m(KS0KS0) for the signal channel, D+ candidates. Upper and middle rows show 1D projections of the 2D fit on m(D0π+) in ranges of m(KS0KS0): left sideband (upper left), region of Ds±KS0KS0π± contamination (upper right), signal region of KS0KS0 (middle left), and right sideband (middle right). Lower row shows 1D projections of the 2D fit on m(KS0KS0) in ranges of m(D0π+): left sideband (left), signal region of D0π+ (center), and right sideband (right)

Fig. 5.

Fig. 5

Results of the 2D fit to the m(Dπ±)×m(KS0KS0) for the signal channel, D- candidates. Upper and middle rows show 1D projections of the 2D fit on m(D¯0π-) in ranges of m(KS0KS0): left sideband (upper left), region of Ds±KS0KS0π± contamination (upper right), signal region of KS0KS0 (middle left), and right sideband (middle right). Lower row shows 1D projections of the 2D fit on m(KS0KS0) in ranges of m(D¯0π-): left sideband (left), signal region of D¯0π- (center), and right sideband (right)

Data Availability Statement

This manuscript has no associated data. [Authors’ comment: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS data preservation, re-use, and open access policy.]

Code Availability Statement

The CMS core software is publicly available on GitHub (https://github.com/cms-sw/cmssw).

Declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Footnotes

A. Castro, I. Golutvin, A. Vorobyev: Deceased.

Contributor Information

CMS Collaboration, Email: cms-publication-committee-chair@cern.ch

CMS Collaboration:

A. Hayrapetyan, A. Tumasyan, W. Adam, J. W. Andrejkovic, T. Bergauer, S. Chatterjee, K. Damanakis, M. Dragicevic, P. S. Hussain, M. Jeitler, N. Krammer, A. Li, D. Liko, I. Mikulec, J. Schieck, R. Schöfbeck, D. Schwarz, M. Sonawane, S. Templ, W. Waltenberger, C.-E. Wulz, M. R. Darwish, T. Janssen, T. Van Laer, P. Van Mechelen, N. Breugelmans, J. D’Hondt, S. Dansana, A. De Moor, M. Delcourt, F. Heyen, S. Lowette, I. Makarenko, D. Müller, S. Tavernier, M. Tytgat, G. P. Van Onsem, S. Van Putte, D. Vannerom, B. Bilin, B. Clerbaux, A. K. Das, G. De Lentdecker, H. Evard, L. Favart, P. Gianneios, J. Jaramillo, A. Khalilzadeh, F. A. Khan, K. Lee, M. Mahdavikhorrami, A. Malara, S. Paredes, M. A. Shahzad, L. Thomas, M. Vanden Bemden, C. Vander Velde, P. Vanlaer, M. De Coen, D. Dobur, G. Gokbulut, Y. Hong, J. Knolle, L. Lambrecht, D. Marckx, K. Mota Amarilo, A. Samalan, K. Skovpen, N. Van Den Bossche, J. van der Linden, L. Wezenbeek, A. Benecke, A. Bethani, G. Bruno, C. Caputo, J. De Favereau De Jeneret, C. Delaere, I. S. Donertas, A. Giammanco, A. O. Guzel, Sa. Jain, V. Lemaitre, J. Lidrych, P. Mastrapasqua, T. T. Tran, S. Wertz, G. A. Alves, M. Alves Gallo Pereira, E. Coelho, G. Correia Silva, C. Hensel, T. Menezes De Oliveira, C. Mora Herrera, A. Moraes, P. Rebello Teles, M. Soeiro, A. Vilela Pereira, W. L. Aldá Júnior, M. Barroso Ferreira Filho, H. Brandao Malbouisson, W. Carvalho, J. Chinellato, E. M. Da Costa, G. G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, R. Gomes De Souza, M. Macedo, J. Martins, L. Mundim, H. Nogima, J. P. Pinheiro, A. Santoro, A. Sznajder, M. Thiel, C. A. Bernardes, L. Calligaris, T. R. Fernandez Perez Tomei, E. M. Gregores, B. Lopes Da Costa, I. Maietto Silverio, P. G. Mercadante, S. F. Novaes, B. Orzari, Sandra S. Padula, A. Aleksandrov, G. Antchev, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Shopova, G. Sultanov, A. Dimitrov, L. Litov, B. Pavlov, P. Petkov, A. Petrov, E. Shumka, S. Keshri, S. Thakur, T. Cheng, T. Javaid, L. Yuan, Z. Hu, Z. Liang, J. Liu, K. Yi, G. M. Chen, H. S. Chen, M. Chen, F. Iemmi, C. H. Jiang, A. Kapoor, H. Liao, Z.-A. Liu, R. Sharma, J. N. Song, J. Tao, C. Wang, J. Wang, Z. Wang, H. Zhang, J. Zhao, A. Agapitos, Y. Ban, S. Deng, B. Guo, C. Jiang, A. Levin, C. Li, Q. Li, Y. Mao, S. Qian, S. J. Qian, X. Qin, X. Sun, D. Wang, H. Yang, L. Zhang, Y. Zhao, C. Zhou, S. Yang, Z. You, K. Jaffel, N. Lu, G. Bauer, B. Li, J. Zhang, X. Gao, Z. Lin, C. Lu, M. Xiao, C. Avila, D. A. Barbosa Trujillo, A. Cabrera, C. Florez, J. Fraga, J. A. Reyes Vega, F. Ramirez, C. Rendón, M. Rodriguez, A. A. Ruales Barbosa, J. D. Ruiz Alvarez, D. Giljanovic, N. Godinovic, D. Lelas, A. Sculac, M. Kovac, A. Petkovic, T. Sculac, P. Bargassa, V. Brigljevic, B. K. Chitroda, D. Ferencek, K. Jakovcic, S. Mishra, A. Starodumov, T. Susa, A. Attikis, K. Christoforou, A. Hadjiagapiou, C. Leonidou, J. Mousa, C. Nicolaou, L. Paizanos, F. Ptochos, P. A. Razis, H. Rykaczewski, H. Saka, A. Stepennov, M. Finger, M. Finger, Jr., A. Kveton, E. Carrera Jarrin, Y. Assran, B. El-mahdy, S. Elgammal, A. Lotfy, M. A. Mahmoud, K. Ehataht, M. Kadastik, T. Lange, S. Nandan, C. Nielsen, J. Pata, M. Raidal, L. Tani, C. Veelken, H. Kirschenmann, K. Osterberg, M. Voutilainen, S. Bharthuar, N. Bin Norjoharuddeen, E. Brücken, F. Garcia, P. Inkaew, K. T. S. Kallonen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, L. Martikainen, M. Myllymäki, M. M. Rantanen, H. Siikonen, J. Tuominiemi, P. Luukka, H. Petrow, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J. L. Faure, F. Ferri, S. Ganjour, P. Gras, G. Hamel de Monchenault, M. Kumar, V. Lohezic, J. Malcles, F. Orlandi, L. Portales, A. Rosowsky, M. Ö. Sahin, A. Savoy-Navarro, P. Simkina, M. Titov, M. Tornago, F. Beaudette, G. Boldrini, P. Busson, A. Cappati, C. Charlot, M. Chiusi, F. Damas, O. Davignon, A. De Wit, I. T. Ehle, B. A. Fontana Santos Alves, S. Ghosh, A. Gilbert, R. Granier de Cassagnac, A. Hakimi, B. Harikrishnan, L. Kalipoliti, G. Liu, M. Nguyen, C. Ochando, R. Salerno, J. B. Sauvan, Y. Sirois, L. Urda Gómez, E. Vernazza, A. Zabi, A. Zghiche, J.-L. Agram, J. Andrea, D. Apparu, D. Bloch, J.-M. Brom, E. C. Chabert, C. Collard, S. Falke, U. Goerlach, R. Haeberle, A.-C. Le Bihan, M. Meena, O. Poncet, G. Saha, M. A. Sessini, P. Van Hove, P. Vaucelle, A. Di Florio, D. Amram, S. Beauceron, B. Blancon, G. Boudoul, N. Chanon, D. Contardo, P. Depasse, C. Dozen, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, C. Greenberg, G. Grenier, B. Ille, E. Jourd‘huy, I. B. Laktineh, M. Lethuillier, L. Mirabito, S. Perries, A. Purohit, M. Vander Donckt, P. Verdier, J. Xiao, I. Lomidze, T. Toriashvili, Z. Tsamalaidze, V. Botta, S. Consuegra Rodríguez, L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, D. Pérez Adán, N. Röwert, M. Teroerde, S. Diekmann, A. Dodonova, N. Eich, D. Eliseev, F. Engelke, J. Erdmann, M. Erdmann, P. Fackeldey, B. Fischer, T. Hebbeker, K. Hoepfner, F. Ivone, A. Jung, M.y. Lee, F. Mausolf, M. Merschmeyer, A. Meyer, S. Mukherjee, D. Noll, F. Nowotny, A. Pozdnyakov, Y. Rath, W. Redjeb, F. Rehm, H. Reithler, V. Sarkisovi, A. Schmidt, A. Sharma, J. L. Spah, A. Stein, F. Torres Da Silva De Araujo, S. Wiedenbeck, S. Zaleski, C. Dziwok, G. Flügge, T. Kress, A. Nowack, O. Pooth, A. Stahl, T. Ziemons, A. Zotz, H. Aarup Petersen, M. Aldaya Martin, J. Alimena, S. Amoroso, Y. An, J. Bach, S. Baxter, M. Bayatmakou, H. Becerril Gonzalez, O. Behnke, A. Belvedere, F. Blekman, K. Borras, A. Campbell, A. Cardini, C. Cheng, F. Colombina, M. De Silva, G. Eckerlin, D. Eckstein, L. I. Estevez Banos, O. Filatov, E. Gallo, A. Geiser, V. Guglielmi, M. Guthoff, A. Hinzmann, L. Jeppe, B. Kaech, M. Kasemann, C. Kleinwort, R. Kogler, M. Komm, D. Krücker, W. Lange, D. Leyva Pernia, K. Lipka, W. Lohmann, F. Lorkowski, R. Mankel, I.-A. Melzer-Pellmann, M. Mendizabal Morentin, A. B. Meyer, G. Milella, K. Moral Figueroa, A. Mussgiller, L. P. Nair, J. Niedziela, A. Nürnberg, Y. Otarid, J. Park, E. Ranken, A. Raspereza, D. Rastorguev, J. Rübenach, L. Rygaard, A. Saggio, M. Scham, S. Schnake, P. Schütze, C. Schwanenberger, D. Selivanova, K. Sharko, M. Shchedrolosiev, D. Stafford, F. Vazzoler, A. Ventura Barroso, R. Walsh, D. Wang, Q. Wang, Y. Wen, K. Wichmann, L. Wiens, C. Wissing, Y. Yang, A. Zimermmane Castro Santos, A. Albrecht, S. Albrecht, M. Antonello, S. Bein, L. Benato, S. Bollweg, M. Bonanomi, P. Connor, K. El Morabit, Y. Fischer, E. Garutti, A. Grohsjean, J. Haller, H. R. Jabusch, G. Kasieczka, P. Keicher, R. Klanner, W. Korcari, T. Kramer, C. c. Kuo, V. Kutzner, F. Labe, J. Lange, A. Lobanov, C. Matthies, L. Moureaux, M. Mrowietz, A. Nigamova, Y. Nissan, A. Paasch, K. J. Pena Rodriguez, T. Quadfasel, B. Raciti, M. Rieger, D. Savoiu, J. Schindler, P. Schleper, M. Schröder, J. Schwandt, M. Sommerhalder, H. Stadie, G. Steinbrück, A. Tews, M. Wolf, S. Brommer, M. Burkart, E. Butz, T. Chwalek, A. Dierlamm, A. Droll, U. Elicabuk, N. Faltermann, M. Giffels, A. Gottmann, F. Hartmann, R. Hofsaess, M. Horzela, U. Husemann, J. Kieseler, M. Klute, R. Koppenhöfer, J. M. Lawhorn, M. Link, A. Lintuluoto, B. Maier, S. Maier, S. Mitra, M. Mormile, Th. Müller, M. Neukum, M. Oh, E. Pfeffer, M. Presilla, G. Quast, K. Rabbertz, B. Regnery, N. Shadskiy, I. Shvetsov, H. J. Simonis, L. Sowa, L. Stockmeier, K. Tauqeer, M. Toms, N. Trevisani, R. F. Von Cube, M. Wassmer, S. Wieland, F. Wittig, R. Wolf, X. Zuo, G. Anagnostou, G. Daskalakis, A. Kyriakis, A. Papadopoulos, A. Stakia, P. Kontaxakis, G. Melachroinos, Z. Painesis, I. Papavergou, I. Paraskevas, N. Saoulidou, K. Theofilatos, E. Tziaferi, K. Vellidis, I. Zisopoulos, G. Bakas, T. Chatzistavrou, G. Karapostoli, K. Kousouris, I. Papakrivopoulos, E. Siamarkou, G. Tsipolitis, A. Zacharopoulou, K. Adamidis, I. Bestintzanos, I. Evangelou, C. Foudas, C. Kamtsikis, P. Katsoulis, P. Kokkas, P. G. Kosmoglou Kioseoglou, N. Manthos, I. Papadopoulos, J. Strologas, C. Hajdu, D. Horvath, K. Márton, A. J. Rádl, F. Sikler, V. Veszpremi, M. Csanád, K. Farkas, A. Fehérkuti, M. M. A. Gadallah, Á. Kadlecsik, P. Major, G. Pásztor, G. I. Veres, B. Ujvari, G. Zilizi, G. Bencze, S. Czellar, J. Molnar, Z. Szillasi, F. Nemes, T. Novak, J. Babbar, S. Bansal, S. B. Beri, V. Bhatnagar, G. Chaudhary, S. Chauhan, N. Dhingra, A. Kaur, A. Kaur, H. Kaur, M. Kaur, S. Kumar, K. Sandeep, T. Sheokand, J. B. Singh, A. Singla, A. Ahmed, A. Bhardwaj, A. Chhetri, B. C. Choudhary, A. Kumar, A. Kumar, M. Naimuddin, K. Ranjan, M. K. Saini, S. Saumya, S. Baradia, S. Barman, S. Bhattacharya, S. Das Gupta, S. Dutta, S. Dutta, S. Sarkar, M. M. Ameen, P. K. Behera, S. C. Behera, S. Chatterjee, G. Dash, P. Jana, P. Kalbhor, S. Kamble, J. R. Komaragiri, D. Kumar, P. R. Pujahari, N. R. Saha, A. Sharma, A. K. Sikdar, R. K. Singh, P. Verma, S. Verma, A. Vijay, S. Dugad, G. B. Mohanty, B. Parida, M. Shelake, P. Suryadevara, A. Bala, S. Banerjee, R. M. Chatterjee, M. Guchait, Sh. Jain, A. Jaiswal, S. Kumar, G. Majumder, K. Mazumdar, S. Parolia, A. Thachayath, S. Bahinipati, C. Kar, D. Maity, P. Mal, T. Mishra, V. K. Muraleedharan Nair Bindhu, K. Naskar, A. Nayak, S. Nayak, K. Pal, P. Sadangi, S. K. Swain, S. Varghese, D. Vats, S. Acharya, A. Alpana, S. Dube, B. Gomber, P. Hazarika, B. Kansal, A. Laha, B. Sahu, S. Sharma, K. Y. Vaish, H. Bakhshiansohi, A. Jafari, M. Zeinali, S. Bashiri, S. Chenarani, S. M. Etesami, Y. Hosseini, M. Khakzad, E. Khazaie, M. Mohammadi Najafabadi, S. Tizchang, M. Felcini, M. Grunewald, M. Abbrescia, A. Colaleo, D. Creanza, B. D’Anzi, N. De Filippis, M. De Palma, W. Elmetenawee, L. Fiore, G. Iaselli, L. Longo, M. Louka, G. Maggi, M. Maggi, I. Margjeka, V. Mastrapasqua, S. My, S. Nuzzo, A. Pellecchia, A. Pompili, G. Pugliese, R. Radogna, D. Ramos, A. Ranieri, L. Silvestris, F. M. Simone, Ü. Sözbilir, A. Stamerra, D. Troiano, R. Venditti, P. Verwilligen, A. Zaza, G. Abbiendi, C. Battilana, D. Bonacorsi, P. Capiluppi, A. Castro, F. R. Cavallo, M. Cuffiani, G. M. Dallavalle, T. Diotalevi, F. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli, L. Giommi, C. Grandi, L. Guiducci, S. Lo Meo, M. Lorusso, L. Lunerti, S. Marcellini, G. Masetti, F. L. Navarria, G. Paggi, A. Perrotta, F. Primavera, A. M. Rossi, S. Rossi Tisbeni, T. Rovelli, G. P. Siroli, S. Costa, A. Di Mattia, A. Lapertosa, R. Potenza, A. Tricomi, C. Tuve, P. Assiouras, G. Barbagli, G. Bardelli, B. Camaiani, A. Cassese, R. Ceccarelli, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, T. Kello, G. Latino, P. Lenzi, M. Lizzo, M. Meschini, S. Paoletti, A. Papanastassiou, G. Sguazzoni, L. Viliani, L. Benussi, S. Bianco, S. Meola, D. Piccolo, P. Chatagnon, F. Ferro, E. Robutti, S. Tosi, A. Benaglia, F. Brivio, F. Cetorelli, F. De Guio, M. E. Dinardo, P. Dini, S. Gennai, R. Gerosa, A. Ghezzi, P. Govoni, L. Guzzi, M. T. Lucchini, M. Malberti, S. Malvezzi, A. Massironi, D. Menasce, L. Moroni, M. Paganoni, S. Palluotto, D. Pedrini, A. Perego, B. S. Pinolini, G. Pizzati, S. Ragazzi, T. Tabarelli de Fatis, S. Buontempo, A. Cagnotta, F. Carnevali, N. Cavallo, F. Fabozzi, A. O. M. Iorio, L. Lista, P. Paolucci, R. Ardino, P. Azzi, N. Bacchetta, M. Bellato, P. Bortignon, G. Bortolato, A. Bragagnolo, A. C. M. Bulla, R. Carlin, P. Checchia, T. Dorigo, U. Gasparini, E. Lusiani, M. Margoni, A. T. Meneguzzo, M. Migliorini, J. Pazzini, P. Ronchese, R. Rossin, M. Sgaravatto, F. Simonetto, M. Tosi, A. Triossi, S. Ventura, M. Zanetti, P. Zotto, A. Zucchetta, G. Zumerle, C. Aimè, A. Braghieri, S. Calzaferri, D. Fiorina, P. Montagna, V. Re, C. Riccardi, P. Salvini, I. Vai, P. Vitulo, S. Ajmal, M. E. Ascioti, G. M. Bilei, C. Carrivale, D. Ciangottini, L. Fanò, M. Magherini, V. Mariani, M. Menichelli, F. Moscatelli, A. Rossi, A. Santocchia, D. Spiga, T. Tedeschi, C. A. Alexe, P. Asenov, P. Azzurri, G. Bagliesi, R. Bhattacharya, L. Bianchini, T. Boccali, E. Bossini, D. Bruschini, R. Castaldi, M. A. Ciocci, M. Cipriani, V. D’Amante, R. Dell’Orso, S. Donato, A. Giassi, F. Ligabue, A. C. Marini, D. Matos Figueiredo, A. Messineo, M. Musich, F. Palla, A. Rizzi, G. Rolandi, S. Roy Chowdhury, T. Sarkar, A. Scribano, P. Spagnolo, R. Tenchini, G. Tonelli, N. Turini, F. Vaselli, A. Venturi, P. G. Verdini, C. Baldenegro Barrera, P. Barria, C. Basile, M. Campana, F. Cavallari, L. Cunqueiro Mendez, D. Del Re, E. Di Marco, M. Diemoz, F. Errico, E. Longo, J. Mijuskovic, G. Organtini, F. Pandolfi, R. Paramatti, C. Quaranta, S. Rahatlou, C. Rovelli, F. Santanastasio, L. Soffi, N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, A. Bellora, C. Biino, C. Borca, N. Cartiglia, M. Costa, R. Covarelli, N. Demaria, L. Finco, M. Grippo, B. Kiani, F. Legger, F. Luongo, C. Mariotti, L. Markovic, S. Maselli, A. Mecca, L. Menzio, P. Meridiani, E. Migliore, M. Monteno, R. Mulargia, M. M. Obertino, G. Ortona, L. Pacher, N. Pastrone, M. Pelliccioni, M. Ruspa, F. Siviero, V. Sola, A. Solano, A. Staiano, C. Tarricone, D. Trocino, G. Umoret, R. White, S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, K. De Leo, G. Della Ricca, S. Dogra, J. Hong, C. Huh, B. Kim, J. Kim, D. Lee, H. Lee, S. W. Lee, C. S. Moon, Y. D. Oh, M. S. Ryu, S. Sekmen, B. Tae, Y. C. Yang, M. S. Kim, G. Bak, P. Gwak, H. Kim, D. H. Moon, E. Asilar, J. Choi, D. Kim, T. J. Kim, J. A. Merlin, Y. Ryou, S. Choi, S. Han, B. Hong, K. Lee, K. S. Lee, S. Lee, J. Yoo, J. Goh, S. Yang, H. S. Kim, Y. Kim, S. Lee, J. Almond, J. H. Bhyun, J. Choi, J. Choi, W. Jun, J. Kim, S. Ko, H. Kwon, H. Lee, J. Lee, J. Lee, B. H. Oh, S. B. Oh, H. Seo, U. K. Yang, I. Yoon, W. Jang, D. Y. Kang, Y. Kang, S. Kim, B. Ko, J. S. H. Lee, Y. Lee, I. C. Park, Y. Roh, I. J. Watson, S. Ha, H. D. Yoo, M. Choi, M. R. Kim, H. Lee, Y. Lee, I. Yu, T. Beyrouthy, Y. Gharbia, K. Dreimanis, A. Gaile, C. Munoz Diaz, D. Osite, G. Pikurs, A. Potrebko, M. Seidel, D. Sidiropoulos Kontos, N. R. Strautnieks, M. Ambrozas, A. Juodagalvis, A. Rinkevicius, G. Tamulaitis, I. Yusuff, Z. Zolkapli, J. F. Benitez, A. Castaneda Hernandez, H. A. Encinas Acosta, L. G. Gallegos Maríñez, M. León Coello, J. A. Murillo Quijada, A. Sehrawat, L. Valencia Palomo, G. Ayala, H. Castilla-Valdez, H. Crotte Ledesma, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, J. Mejia Guisao, C. A. Mondragon Herrera, A. Sánchez Hernández, C. Oropeza Barrera, D. L. Ramirez Guadarrama, M. Ramírez García, I. Bautista, I. Pedraza, H. A. Salazar Ibarguen, C. Uribe Estrada, I. Bubanja, N. Raicevic, P. H. Butler, A. Ahmad, M. I. Asghar, A. Awais, M. I. M. Awan, H. R. Hoorani, W. A. Khan, V. Avati, L. Grzanka, M. Malawski, H. Bialkowska, M. Bluj, M. Górski, M. Kazana, M. Szleper, P. Zalewski, K. Bunkowski, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, A. Muhammad, K. Pozniak, W. Zabolotny, M. Araujo, D. Bastos, C. Beirão Da Cruz E Silva, A. Boletti, M. Bozzo, T. Camporesi, G. Da Molin, M. Gallinaro, J. Hollar, N. Leonardo, G. B. Marozzo, T. Niknejad, A. Petrilli, M. Pisano, J. Seixas, J. Varela, J. W. Wulff, P. Adzic, P. Milenovic, M. Dordevic, J. Milosevic, V. Rekovic, J. Alcaraz Maestre, Cristina F. Bedoya, Oliver M. Carretero, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, D. Fernández Del Val, J. P. Fernández Ramos, J. Flix, M. C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J. M. Hernandez, M. I. Josa, E. Martin Viscasillas, D. Moran, C. M. Morcillo Perez, Á. Navarro Tobar, C. Perez Dengra, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, S. Sánchez Navas, J. Sastre, J. Vazquez Escobar, J. F. de Trocóniz, B. Alvarez Gonzalez, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J. R. González Fernández, P. Leguina, E. Palencia Cortezon, J. Prado Pico, C. Ramón Álvarez, V. Rodríguez Bouza, A. Soto Rodríguez, A. Trapote, C. Vico Villalba, P. Vischia, S. Bhowmik, S. Blanco Fernández, J. A. Brochero Cifuentes, I. J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, G. Gomez, C. Lasaosa García, R. Lopez Ruiz, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, P. Matorras Cuevas, E. Navarrete Ramos, J. Piedra Gomez, L. Scodellaro, I. Vila, J. M. Vizan Garcia, B. Kailasapathy, D. D. C. Wickramarathna, W. G. D. Dharmaratna, K. Liyanage, N. Perera, D. Abbaneo, C. Amendola, E. Auffray, G. Auzinger, J. Baechler, D. Barney, A. Bermúdez Martínez, M. Bianco, A. A. Bin Anuar, A. Bocci, L. Borgonovi, C. Botta, E. Brondolin, C. Caillol, G. Cerminara, N. Chernyavskaya, D. d’Enterria, A. Dabrowski, A. David, A. De Roeck, M. M. Defranchis, M. Deile, M. Dobson, G. Franzoni, W. Funk, S. Giani, D. Gigi, K. Gill, F. Glege, J. Hegeman, J. K. Heikkilä, B. Huber, V. Innocente, T. James, P. Janot, O. Kaluzinska, O. Karacheban, S. Laurila, P. Lecoq, E. Leutgeb, C. Lourenço, L. Malgeri, M. Mannelli, M. Matthewman, A. Mehta, F. Meijers, S. Mersi, E. Meschi, V. Milosevic, F. Monti, F. Moortgat, M. Mulders, I. Neutelings, S. Orfanelli, F. Pantaleo, G. Petrucciani, A. Pfeiffer, M. Pierini, H. Qu, D. Rabady, B. Ribeiro Lopes, M. Rovere, H. Sakulin, S. Sanchez Cruz, S. Scarfi, C. Schwick, M. Selvaggi, A. Sharma, K. Shchelina, P. Silva, P. Sphicas, A. G. Stahl Leiton, A. Steen, S. Summers, D. Treille, P. Tropea, D. Walter, J. Wanczyk, J. Wang, S. Wuchterl, P. Zehetner, P. Zejdl, W. D. Zeuner, T. Bevilacqua, L. Caminada, A. Ebrahimi, W. Erdmann, R. Horisberger, Q. Ingram, H. C. Kaestli, D. Kotlinski, C. Lange, M. Missiroli, L. Noehte, T. Rohe, T. K. Aarrestad, K. Androsov, M. Backhaus, G. Bonomelli, A. Calandri, C. Cazzaniga, K. Datta, P. De Bryas Dexmiers D‘archiac, A. De Cosa, G. Dissertori, M. Dittmar, M. Donegà, F. Eble, M. Galli, K. Gedia, F. Glessgen, C. Grab, N. Härringer, T. G. Harte, D. Hits, W. Lustermann, A.-M. Lyon, R. A. Manzoni, M. Marchegiani, L. Marchese, C. Martin Perez, A. Mascellani, F. Nessi-Tedaldi, F. Pauss, V. Perovic, S. Pigazzini, C. Reissel, B. Ristic, F. Riti, R. Seidita, J. Steggemann, A. Tarabini, D. Valsecchi, R. Wallny, C. Amsler, P. Bärtschi, M. F. Canelli, K. Cormier, M. Huwiler, W. Jin, A. Jofrehei, B. Kilminster, S. Leontsinis, S. P. Liechti, A. Macchiolo, P. Meiring, F. Meng, U. Molinatti, J. Motta, A. Reimers, P. Robmann, M. Senger, E. Shokr, F. Stäger, R. Tramontano, C. Adloff, D. Bhowmik, C. M. Kuo, W. Lin, P. K. Rout, P. C. Tiwari, S. S. Yu, L. Ceard, K. F. Chen, P. s. Chen, Z. g. Chen, A. De Iorio, W.-S. Hou, T. h. Hsu, Y. w. Kao, S. Karmakar, G. Kole, Y.y. Li, R.-S. Lu, E. Paganis, X.f. Su, J. Thomas-Wilsker, L. s. Tsai, D. Tsionou, H. y. Wu, E. Yazgan, C. Asawatangtrakuldee, N. Srimanobhas, V. Wachirapusitanand, D. Agyel, F. Boran, F. Dolek, I. Dumanoglu, E. Eskut, Y. Guler, E. Gurpinar Guler, C. Isik, O. Kara, A. Kayis Topaksu, U. Kiminsu, G. Onengut, K. Ozdemir, A. Polatoz, B. Tali, U. G. Tok, S. Turkcapar, E. Uslan, I. S. Zorbakir, G. Sokmen, M. Yalvac, B. Akgun, I. O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, S. Tekten, A. Cakir, K. Cankocak, G. G. Dincer, Y. Komurcu, S. Sen, O. Aydilek, B. Hacisahinoglu, I. Hos, B. Kaynak, S. Ozkorucuklu, O. Potok, H. Sert, C. Simsek, C. Zorbilmez, S. Cerci, B. Isildak, D. Sunar Cerci, T. Yetkin, A. Boyaryntsev, B. Grynyov, L. Levchuk, D. Anthony, J. J. Brooke, A. Bundock, F. Bury, E. Clement, D. Cussans, H. Flacher, M. Glowacki, J. Goldstein, H. F. Heath, M.-L. Holmberg, L. Kreczko, S. Paramesvaran, L. Robertshaw, S. Seif El Nasr-Storey, V. J. Smith, N. Stylianou, K. Walkingshaw Pass, A. H. Ball, K. W. Bell, A. Belyaev, C. Brew, R. M. Brown, D. J. A. Cockerill, C. Cooke, A. Elliot, K. V. Ellis, K. Harder, S. Harper, J. Linacre, K. Manolopoulos, D. M. Newbold, E. Olaiya, D. Petyt, T. Reis, A. R. Sahasransu, G. Salvi, T. Schuh, C. H. Shepherd-Themistocleous, I. R. Tomalin, K. C. Whalen, T. Williams, I. Andreou, R. Bainbridge, P. Bloch, C. E. Brown, O. Buchmuller, V. Cacchio, C. A. Carrillo Montoya, G. S. Chahal, D. Colling, J. S. Dancu, I. Das, P. Dauncey, G. Davies, J. Davies, M. Della Negra, S. Fayer, G. Fedi, G. Hall, M. H. Hassanshahi, A. Howard, G. Iles, C. R. Knight, J. Langford, J. León Holgado, L. Lyons, A.-M. Magnan, S. Mallios, M. Mieskolainen, J. Nash, M. Pesaresi, P. B. Pradeep, B. C. Radburn-Smith, A. Richards, A. Rose, K. Savva, C. Seez, R. Shukla, A. Tapper, K. Uchida, G. P. Uttley, L. H. Vage, T. Virdee, M. Vojinovic, N. Wardle, D. Winterbottom, K. Coldham, J. E. Cole, A. Khan, P. Kyberd, I. D. Reid, S. Abdullin, A. Brinkerhoff, E. Collins, J. Dittmann, K. Hatakeyama, J. Hiltbrand, B. McMaster, J. Samudio, S. Sawant, C. Sutantawibul, J. Wilson, R. Bartek, A. Dominguez, C. Huerta Escamilla, A. E. Simsek, R. Uniyal, A. M. Vargas Hernandez, B. Bam, A. Buchot Perraguin, R. Chudasama, S. I. Cooper, C. Crovella, S. V. Gleyzer, E. Pearson, C. U. Perez, P. Rumerio, E. Usai, R. Yi, A. Akpinar, C. Cosby, G. De Castro, Z. Demiragli, C. Erice, C. Fangmeier, C. Fernandez Madrazo, E. Fontanesi, D. Gastler, F. Golf, S. Jeon, J. O‘cain, I. Reed, J. Rohlf, K. Salyer, D. Sperka, D. Spitzbart, I. Suarez, A. Tsatsos, A. G. Zecchinelli, G. Benelli, D. Cutts, L. Gouskos, M. Hadley, U. Heintz, J. M. Hogan, T. Kwon, G. Landsberg, K. T. Lau, D. Li, J. Luo, S. Mondal, N. Pervan, T. Russell, S. Sagir, F. Simpson, M. Stamenkovic, N. Venkatasubramanian, X. Yan, S. Abbott, C. Brainerd, R. Breedon, H. Cai, M. Calderon De La Barca Sanchez, M. Chertok, M. Citron, J. Conway, P. T. Cox, R. Erbacher, F. Jensen, O. Kukral, G. Mocellin, M. Mulhearn, S. Ostrom, W. Wei, Y. Yao, S. Yoo, F. Zhang, M. Bachtis, R. Cousins, A. Datta, G. Flores Avila, J. Hauser, M. Ignatenko, M. A. Iqbal, T. Lam, E. Manca, A. Nunez Del Prado, D. Saltzberg, V. Valuev, R. Clare, J. W. Gary, M. Gordon, G. Hanson, W. Si, A. Aportela, A. Arora, J. G. Branson, S. Cittolin, S. Cooperstein, D. Diaz, J. Duarte, L. Giannini, Y. Gu, J. Guiang, R. Kansal, V. Krutelyov, R. Lee, J. Letts, M. Masciovecchio, F. Mokhtar, S. Mukherjee, M. Pieri, M. Quinnan, B. V. Sathia Narayanan, V. Sharma, M. Tadel, E. Vourliotis, F. Würthwein, Y. Xiang, A. Yagil, A. Barzdukas, L. Brennan, C. Campagnari, K. Downham, C. Grieco, J. Incandela, J. Kim, A. J. Li, P. Masterson, H. Mei, J. Richman, S. N. Santpur, U. Sarica, R. Schmitz, F. Setti, J. Sheplock, D. Stuart, T. Á. Vámi, S. Wang, D. Zhang, S. Bhattacharya, A. Bornheim, O. Cerri, A. Latorre, J. Mao, H. B. Newman, G. Reales Gutiérrez, M. Spiropulu, J. R. Vlimant, C. Wang, S. Xie, R. Y. Zhu, J. Alison, S. An, P. Bryant, M. Cremonesi, V. Dutta, T. Ferguson, T. A. Gómez Espinosa, A. Harilal, A. Kallil Tharayil, C. Liu, T. Mudholkar, S. Murthy, P. Palit, K. Park, M. Paulini, A. Roberts, A. Sanchez, W. Terrill, J. P. Cumalat, W. T. Ford, A. Hart, A. Hassani, G. Karathanasis, N. Manganelli, J. Pearkes, C. Savard, N. Schonbeck, K. Stenson, K. A. Ulmer, S. R. Wagner, N. Zipper, D. Zuolo, J. Alexander, S. Bright-Thonney, X. Chen, D. J. Cranshaw, J. Fan, X. Fan, S. Hogan, P. Kotamnives, J. Monroy, M. Oshiro, J. R. Patterson, M. Reid, A. Ryd, J. Thom, P. Wittich, R. Zou, M. Albrow, M. Alyari, O. Amram, G. Apollinari, A. Apresyan, L. A. T. Bauerdick, D. Berry, J. Berryhill, P. C. Bhat, K. Burkett, J. N. Butler, A. Canepa, G. B. Cerati, H. W. K. Cheung, F. Chlebana, G. Cummings, J. Dickinson, I. Dutta, V. D. Elvira, Y. Feng, J. Freeman, A. Gandrakota, Z. Gecse, L. Gray, D. Green, A. Grummer, S. Grünendahl, D. Guerrero, O. Gutsche, R. M. Harris, R. Heller, T. C. Herwig, J. Hirschauer, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, T. Klijnsma, B. Klima, K. H. M. Kwok, S. Lammel, D. Lincoln, R. Lipton, T. Liu, C. Madrid, K. Maeshima, C. Mantilla, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, J. Ngadiuba, D. Noonan, S. Norberg, V. Papadimitriou, N. Pastika, K. Pedro, C. Pena, F. Ravera, A. Reinsvold Hall, L. Ristori, M. Safdari, E. Sexton-Kennedy, N. Smith, A. Soha, L. Spiegel, S. Stoynev, J. Strait, L. Taylor, S. Tkaczyk, N. V. Tran, L. Uplegger, E. W. Vaandering, I. Zoi, C. Aruta, P. Avery, D. Bourilkov, P. Chang, V. Cherepanov, R. D. Field, E. Koenig, M. Kolosova, J. Konigsberg, A. Korytov, K. Matchev, N. Menendez, G. Mitselmakher, K. Mohrman, A. Muthirakalayil Madhu, N. Rawal, S. Rosenzweig, Y. Takahashi, J. Wang, T. Adams, A. Al Kadhim, A. Askew, S. Bower, V. Hagopian, R. Hashmi, R. S. Kim, S. Kim, T. Kolberg, G. Martinez, H. Prosper, P. R. Prova, M. Wulansatiti, R. Yohay, J. Zhang, B. Alsufyani, M. M. Baarmand, S. Butalla, S. Das, T. Elkafrawy, M. Hohlmann, E. Yanes, M. R. Adams, A. Baty, C. Bennett, R. Cavanaugh, R. Escobar Franco, O. Evdokimov, C. E. Gerber, M. Hawksworth, A. Hingrajiya, D. J. Hofman, J.h. Lee, D. S. Lemos, A. H. Merrit, C. Mills, S. Nanda, G. Oh, B. Ozek, D. Pilipovic, R. Pradhan, E. Prifti, T. Roy, S. Rudrabhatla, M. B. Tonjes, N. Varelas, M. A. Wadud, Z. Ye, J. Yoo, M. Alhusseini, D. Blend, K. Dilsiz, L. Emediato, G. Karaman, O. K. Köseyan, J.-P. Merlo, A. Mestvirishvili, O. Neogi, H. Ogul, Y. Onel, A. Penzo, C. Snyder, E. Tiras, B. Blumenfeld, L. Corcodilos, J. Davis, A. V. Gritsan, L. Kang, S. Kyriacou, P. Maksimovic, M. Roguljic, J. Roskes, S. Sekhar, M. Swartz, A. Abreu, L. F. Alcerro Alcerro, J. Anguiano, S. Arteaga Escatel, P. Baringer, A. Bean, Z. Flowers, D. Grove, J. King, G. Krintiras, M. Lazarovits, C. Le Mahieu, J. Marquez, M. Murray, M. Nickel, M. Pitt, S. Popescu, C. Rogan, C. Royon, R. Salvatico, S. Sanders, C. Smith, G. Wilson, B. Allmond, R. Gujju Gurunadha, A. Ivanov, K. Kaadze, Y. Maravin, J. Natoli, D. Roy, G. Sorrentino, A. Baden, A. Belloni, J. Bistany-riebman, Y. M. Chen, S. C. Eno, N. J. Hadley, S. Jabeen, R. G. Kellogg, T. Koeth, B. Kronheim, Y. Lai, S. Lascio, A. C. Mignerey, S. Nabili, C. Palmer, C. Papageorgakis, M. M. Paranjpe, L. Wang, J. Bendavid, I. A. Cali, P.c. Chou, M. D’Alfonso, J. Eysermans, C. Freer, G. Gomez-Ceballos, M. Goncharov, G. Grosso, P. Harris, D. Hoang, D. Kovalskyi, J. Krupa, L. Lavezzo, Y.-J. Lee, K. Long, C. Mcginn, A. Novak, C. Paus, C. Roland, G. Roland, S. Rothman, G. S. F. Stephans, Z. Wang, B. Wyslouch, T. J. Yang, B. Crossman, B. M. Joshi, C. Kapsiak, M. Krohn, D. Mahon, J. Mans, B. Marzocchi, R. Rusack, R. Saradhy, N. Strobbe, K. Bloom, D. R. Claes, G. Haza, J. Hossain, C. Joo, I. Kravchenko, J. E. Siado, W. Tabb, A. Vagnerini, A. Wightman, F. Yan, D. Yu, H. Bandyopadhyay, L. Hay, H. w. Hsia, I. Iashvili, A. Kalogeropoulos, A. Kharchilava, M. Morris, D. Nguyen, S. Rappoccio, H. Rejeb Sfar, A. Williams, P. Young, G. Alverson, E. Barberis, J. Bonilla, J. Dervan, Y. Haddad, Y. Han, A. Krishna, J. Li, M. Lu, G. Madigan, R. Mccarthy, D. M. Morse, V. Nguyen, T. Orimoto, A. Parker, L. Skinnari, D. Wood, J. Bueghly, S. Dittmer, K. A. Hahn, Y. Liu, Y. Miao, D. G. Monk, M. H. Schmitt, A. Taliercio, M. Velasco, G. Agarwal, R. Band, R. Bucci, S. Castells, A. Das, R. Goldouzian, M. Hildreth, K. W. Ho, K. Hurtado Anampa, T. Ivanov, C. Jessop, K. Lannon, J. Lawrence, N. Loukas, L. Lutton, J. Mariano, N. Marinelli, I. Mcalister, T. McCauley, C. Mcgrady, C. Moore, Y. Musienko, H. Nelson, M. Osherson, A. Piccinelli, R. Ruchti, A. Townsend, Y. Wan, M. Wayne, H. Yockey, M. Zarucki, L. Zygala, A. Basnet, B. Bylsma, M. Carrigan, L. S. Durkin, C. Hill, M. Joyce, M. Nunez Ornelas, K. Wei, B. L. Winer, B. R. Yates, H. Bouchamaoui, P. Das, G. Dezoort, P. Elmer, A. Frankenthal, B. Greenberg, N. Haubrich, K. Kennedy, G. Kopp, S. Kwan, D. Lange, A. Loeliger, D. Marlow, I. Ojalvo, J. Olsen, A. Shevelev, D. Stickland, C. Tully, S. Malik, A. S. Bakshi, S. Chandra, R. Chawla, A. Gu, L. Gutay, M. Jones, A. W. Jung, A. M. Koshy, M. Liu, G. Negro, N. Neumeister, G. Paspalaki, S. Piperov, V. Scheurer, J. F. Schulte, M. Stojanovic, J. Thieman, A. K. Virdi, F. Wang, W. Xie, J. Dolen, N. Parashar, A. Pathak, D. Acosta, T. Carnahan, K. M. Ecklund, P. J. Fernández Manteca, S. Freed, P. Gardner, F. J. M. Geurts, I. Krommydas, W. Li, J. Lin, O. Miguel Colin, B. P. Padley, R. Redjimi, J. Rotter, E. Yigitbasi, Y. Zhang, A. Bodek, P. de Barbaro, R. Demina, A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, N. Parmar, P. Parygin, E. Popova, R. Taus, B. Chiarito, J. P. Chou, S. V. Clark, D. Gadkari, Y. Gershtein, E. Halkiadakis, M. Heindl, C. Houghton, D. Jaroslawski, S. Konstantinou, I. Laflotte, A. Lath, R. Montalvo, K. Nash, J. Reichert, H. Routray, P. Saha, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S. A. Thayil, S. Thomas, J. Vora, H. Wang, D. Ally, A. G. Delannoy, S. Fiorendi, S. Higginbotham, T. Holmes, A. R. Kanuganti, N. Karunarathna, L. Lee, E. Nibigira, S. Spanier, D. Aebi, M. Ahmad, T. Akhter, O. Bouhali, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, H. Kim, S. Luo, R. Mueller, D. Overton, D. Rathjens, A. Safonov, N. Akchurin, J. Damgov, N. Gogate, V. Hegde, A. Hussain, Y. Kazhykarim, K. Lamichhane, S. W. Lee, A. Mankel, T. Peltola, I. Volobouev, E. Appelt, Y. Chen, S. Greene, A. Gurrola, W. Johns, R. Kunnawalkam Elayavalli, A. Melo, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska, J. Viinikainen, B. Cardwell, H. Chung, B. Cox, J. Hakala, R. Hirosky, A. Ledovskoy, C. Neu, S. Bhattacharya, P. E. Karchin, A. Aravind, S. Banerjee, K. Black, T. Bose, S. Dasu, I. De Bruyn, P. Everaerts, C. Galloni, H. He, M. Herndon, A. Herve, C. K. Koraka, A. Lanaro, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, A. Mohammadi, S. Mondal, G. Parida, L. Pétré, D. Pinna, A. Savin, V. Shang, V. Sharma, W. H. Smith, D. Teague, H. F. Tsoi, W. Vetens, A. Warden, S. Afanasiev, V. Alexakhin, V. Andreev, Yu. Andreev, T. Aushev, M. Azarkin, A. Babaev, V. Blinov, E. Boos, V. Borshch, D. Budkouski, V. Bunichev, V. Chekhovsky, R. Chistov, M. Danilov, A. Dermenev, T. Dimova, D. Druzhkin, M. Dubinin, L. Dudko, A. Ershov, G. Gavrilov, V. Gavrilov, S. Gninenko, V. Golovtcov, N. Golubev, I. Golutvin, I. Gorbunov, A. Gribushin, Y. Ivanov, V. Kachanov, V. Karjavine, A. Karneyeu, V. Kim, M. Kirakosyan, D. Kirpichnikov, M. Kirsanov, V. Klyukhin, O. Kodolova, D. Konstantinov, V. Korenkov, A. Kozyrev, N. Krasnikov, A. Lanev, P. Levchenko, N. Lychkovskaya, V. Makarenko, A. Malakhov, V. Matveev, V. Murzin, A. Nikitenko, S. Obraztsov, V. Oreshkin, V. Palichik, V. Perelygin, S. Petrushanko, S. Polikarpov, V. Popov, O. Radchenko, M. Savina, V. Savrin, V. Sergeychik, V. Shalaev, S. Shmatov, S. Shulha, Y. Skovpen, S. Slabospitskii, V. Smirnov, A. Snigirev, D. Sosnov, V. Sulimov, A. Terkulov, O. Teryaev, I. Tlisova, A. Toropin, A. Tulupov, L. Uvarov, A. Uzunian, A. Vorobyev, N. Voytishin, B. S. Yuldashev, A. Zarubin, I. Zhizhin, and A. Zhokin

References

  • 1.A.D. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967). 10.1070/PU1991v034n05ABEH002497 [Google Scholar]
  • 2.N. Cabibbo et al., Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531 (1963). 10.1103/PhysRevLett.10.531 [Google Scholar]
  • 3.M. Kobayashi, T. Maskawa, CP-violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652 (1973). 10.1143/PTP.49.652 [Google Scholar]
  • 4.Particle Data Group, “Review of particle physics”, PTEP. 2022, 083C01 (2022). 10.1093/ptep/ptac097
  • 5.A.G. Cohen, D.B. Kaplan, A.E. Nelson, Progress in electroweak baryogenesis. Ann. Rev. Nucl. Part. Sci. 43, 27 (1993). 10.1146/annurev.ns.43.120193.000331. arXiv:hep-ph/9302210 [Google Scholar]
  • 6.A. Riotto, M. Trodden, Recent progress in baryogenesis. Ann. Rev. Nucl. Part. Sci. 49, 35 (1999). 10.1146/annurev.nucl.49.1.35. arXiv:hep-ph/9901362 [Google Scholar]
  • 7.W.-S. Hou, Source of CP violation for the baryon asymmetry of the Universe. Chin. J. Phys. 47, 134 (2009). arXiv:0803.1234 [Google Scholar]
  • 8.S.L. Glashow, J. Iliopoulos, L. Maiani, Weak interactions with lepton-hadron symmetry. Phys. Rev. D 2, 1285 (1970). 10.1103/PhysRevD.2.1285 [Google Scholar]
  • 9.LHCb Collaboration, Observation of CP violation in charm decays. Phys. Rev. Lett. 122, 211803 (2019). 10.1103/PhysRevLett.122.211803. arXiv:1903.08726 [DOI] [PubMed]
  • 10.A. Lenz, G. Wilkinson, Mixing and CP violation in the charm system. Ann. Rev. Nucl. Part. Sci. 71, 59 (2021). 10.1146/annurev-nucl-102419-124613. arXiv:2011.04443 [Google Scholar]
  • 11.U. Nierste, S. Schacht, Inline graphic violation in Inline graphic. Phys. Rev. D 92, 054036 (2015). 10.1103/PhysRevD.92.054036. arXiv:1508.00074 [Google Scholar]
  • 12.H.-N. Li, C.-D. Lu, F.-S. Yu, Branching ratios and direct Inline graphic asymmetries in Inline graphic decays. Phys. Rev. D 86, 036012 (2012). 10.1103/PhysRevD.86.036012. arXiv:1203.3120 [Google Scholar]
  • 13.H.-Y. Cheng, C.-W. Chiang, Revisiting Inline graphic violation in Inline graphic and Inline graphic decays. Phys. Rev. D 100, 093002 (2019). 10.1103/PhysRevD.100.093002. arXiv:1909.03063 [Google Scholar]
  • 14.F. Buccella, A. Paul, P. Santorelli, Inline graphic breaking through final state interactions and Inline graphic asymmetries in Inline graphic decays. Phys. Rev. D 99, 113001 (2019). 10.1103/PhysRevD.99.113001. arXiv:1902.05564 [Google Scholar]
  • 15.J. Brod, A.L. Kagan, J. Zupan, Size of direct Inline graphic violation in singly Cabibbo-suppressed Inline graphic decays. Phys. Rev. D 86, 014023 (2012). 10.1103/PhysRevD.86.014023. arXiv:1111.5000 [Google Scholar]
  • 16.LHCb Collaboration, Measurement of Inline graphic asymmetry in Inline graphic decays. Phys. Rev. D 104, L031102 (2021). 10.1103/PhysRevD.104.L031102. arXiv:2105.01565
  • 17.Belle Collaboration, Search for Inline graphic violation and measurement of the branching fraction in the decay Inline graphic. Phys. Rev. Lett. 119, 171801 (2017). 10.1103/PhysRevLett.119.171801. arXiv:1705.05966 [DOI] [PubMed] [Google Scholar]
  • 18.C.D.F. Collaboration, Measurement of CP-violation asymmetries in Inline graphic. Phys. Rev. D 86, 032007 (2012). 10.1103/PhysRevD.86.032007. arXiv:1207.0825 [Google Scholar]
  • 19.CMS Collaboration, Test of lepton flavor universality in Inline graphic and Inline graphic decays in proton–proton collisions at Inline graphic = 13 TeV (2024) (Accepted by Rep. Prog. Phys). arXiv:2401.07090 [DOI] [PubMed]
  • 20.CMS Collaboration, Enriching the physics program of the CMS experiment via data scouting and data parking (2024) (Submitted to Phys. Rep). arXiv:2403.16134
  • 21.CMS Tracker Group Collaboration, The CMS Phase-1 pixel detector upgrade. JINST 16, P02027 (2021). 10.1088/1748-0221/16/02/P02027. arXiv:2012.14304
  • 22.CMS Collaboration, Track impact parameter resolution for the full pseudo rapidity coverage in the 2017 dataset with the CMS Phase-1 pixel detector. CMS Detector Performance Note CMS-DP-2020-049 (2020). https://cds.cern.ch/record/2743740
  • 23.CMS Collaboration, Performance of the CMS Level-1 trigger in proton-proton collisions at Inline graphic. JINST 15, P10017 (2020). 10.1088/1748-0221/15/10/P10017. arXiv:2006.10165
  • 24.CMS Collaboration, The CMS trigger system. JINST 12, P01020 (2017). 10.1088/1748-0221/12/01/P01020. arXiv:1609.02366
  • 25.CMS Collaboration, The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). 10.1088/1748-0221/3/08/S08004
  • 26.T. Sjöstrand et al., An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159 (2015). 10.1016/j.cpc.2015.01.024. arXiv:1410.3012 [Google Scholar]
  • 27.D.J. Lange, The EvtGen particle decay simulation package. Nucl. Instrum. Methods A 462, 152 (2001). 10.1016/S0168-9002(01)00089-4 [Google Scholar]
  • 28.CMS Collaboration, Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements. Eur. Phys. J. C 80, 4 (2020). 10.1140/epjc/s10052-019-7499-4. arXiv:1903.12179 [DOI] [PMC free article] [PubMed]
  • 29.E. Barberio, Z. Wa̧s, PHOTOS—a universal Monte Carlo for QED radiative corrections: version 2.0. Comput. Phys. Commun. 79, 291 (1994). 10.1016/0010-4655(94)90074-4
  • 30.GEANT4 Collaboration, Geant4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003). 10.1016/S0168-9002(03)01368-8
  • 31.CMS Collaboration, CMS tracking performance results from early LHC operation. Eur. Phys. J. C 70, 1165 (2010). 10.1140/epjc/s10052-010-1491-3. arXiv:1007.1988
  • 32.CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker. JINST 9, P10009 (2014). 10.1088/1748-0221/9/10/P10009. arXiv:1405.6569
  • 33.N.L. Johnson, Systems of frequency curves generated by methods of translation. Biometrika 36, 149 (1949). 10.2307/2332539 [PubMed] [Google Scholar]
  • 34.M.J. Oreglia, A study of the reactions Inline graphic. Ph.D. thesis, Stanford University, 1980. SLAC Report SLAC-R-236. http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-r-236.pdf
  • 35.CLEO Collaboration, Search for CP violation in Inline graphic. Phys. Rev. D 70, 091101 (2004). 10.1103/PhysRevD.70.091101. arXiv:hep-ex/0311033
  • 36.HEPData record for this analysis (2024). 10.17182/hepdata.147012

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

This manuscript has no associated data. [Authors’ comment: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS data preservation, re-use, and open access policy.]

The CMS core software is publicly available on GitHub (https://github.com/cms-sw/cmssw).


Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES