Abstract
Tryptensin, a vasopressor substance generated from human plasma protein fraction IV-4 by trypsin, has been isolated and the amino acid composition analysed. The procedures used for the isolation were: (a) adsorption of the formed tryptensin on Dowex 50W (X2; NH4+ form); (b) gel filtration through Sephadex G-25; (c) cation-exchange chromatography on CM-cellulose; (d) anion-exchange chromatography on DEAE-cellulose; (e) re-chromatography on CM-cellulose; (f) gel filtration on Bio-Gel P-2; (g) partition chromatography on high-pressure liquid chromatography. The homogeneity of the isolated tryptensin was confirmed by thin-layer chromatography and thin-layer electrophoresis. The amino acid analysis of the hydrolysate suggested the following proportional composition: Asp, 1; Val, 1; Ile, 1; Tyr, 1; Phe, 1; His, 1; Arg, 1; Pro, 1. This composition is identical with that of human angiotensin.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arakawa K., Ikeda M., Fukuyama J., Sakai T. A pressor formation by trypsin from renin-denatured human plasma protein. J Clin Endocrinol Metab. 1976 Mar;42(3):599–602. doi: 10.1210/jcem-42-3-599. [DOI] [PubMed] [Google Scholar]
- Arakawa K., Minohara A., Uemura N., Sakai T., Ikeda M. Characterization of renin-like activity in human plasma protein IV-4 fraction. Endocrinol Jpn. 1975 Oct;22(5):427–432. doi: 10.1507/endocrj1954.22.427. [DOI] [PubMed] [Google Scholar]
- Arakawa K., Nakatani M., Minohara A., Nakamura M. Isolation and amino acid composition of human angiotensin I. Biochem J. 1967 Sep;104(3):900–906. doi: 10.1042/bj1040900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arakawa K., Nakatani M., Nakamura M. Purification of human angiotensin. Nature. 1967 Apr 15;214(5085):278–279. doi: 10.1038/214278a0. [DOI] [PubMed] [Google Scholar]
- Arakawa K., Nakatani M., Nakamura M. Species specificity in reaction between renin and angiotensinogen. Nature. 1965 Aug 7;207(997):636–636. doi: 10.1038/207636a0. [DOI] [PubMed] [Google Scholar]
- Arawaka K., Minohara A., Yamada J., Uemura N., Nakamura M. Micro-determination of human plasma renin activity with the addition of homologous substrate. Clin Chim Acta. 1968 Nov;22(3):309–315. doi: 10.1016/0009-8981(68)90030-2. [DOI] [PubMed] [Google Scholar]
- ELLIOTT D. F., HORTON E. W., LEWIS G. P. The isolation of bradykinin, a plasma kinin from ox blood. Biochem J. 1961 Jan;78:60–65. doi: 10.1042/bj0780060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOSTKA V., CARPENTER F. H. INHIBITION OF CHYMOTRYPSIN ACTIVITY IN CRYSTALLINE TRYPSIN PREPARATIONS. J Biol Chem. 1964 Jun;239:1799–1803. [PubMed] [Google Scholar]
- Morris B. J., Lumbers E. R. The activation of renin in human amniotic fluid by proteolytic enzymes. Biochim Biophys Acta. 1972 Dec 7;289(2):385–391. doi: 10.1016/0005-2744(72)90090-3. [DOI] [PubMed] [Google Scholar]
- Sealey J. E., Atlas S. A., Laragh J. H., Oza N. B., Ryan J. W. Activation of a prorenin-like substance in human plasma by trypsin and by urinary kallikrein. Hypertension. 1979 May-Jun;1(3):179–189. doi: 10.1161/01.hyp.1.3.179. [DOI] [PubMed] [Google Scholar]
- Sonenberg N., Wilchek M., Zamir A. Mapping of 23-S rRNA at the ribosomal peptidyl-transferase center by photo-affinity labeling. Eur J Biochem. 1977 Jul 15;77(2):217–222. doi: 10.1111/j.1432-1033.1977.tb11660.x. [DOI] [PubMed] [Google Scholar]