Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Apr 1;187(1):105–113. doi: 10.1042/bj1870105

Sequence organization in nuclear deoxyribonucleic acid from Physarum polycephalum. Physical properties of foldback sequences.

P L Jack, N Hardman
PMCID: PMC1162497  PMID: 7406856

Abstract

An investigation was performed with the use of physical techniques, to determine the nature and organization of inverted repeat sequences in nuclear DNA fragments from Physarum polycephalum. From the average size of foldback duplexes (550 nucleotide pairs), and the foldback duplex yield as determined by treatment of DNA with S1 deoxyribonuclease followed by hydroxyapatite chromatography, it is estimated that there are at least 25000 foldback sequences in the Physarum genome. Foldback DNA molecules exhibit properties intermediate between single-stranded DNA and native duplexes on elution from hydroxyapatite with a salt gradient. In addition, thermal-elution chromatography of foldback DNA from hydroxyapatite crystals shows that foldback duplexes are less stable than native DNA. These properties can be explained on the basis that inverted repeat sequences are mismatched when in the foldback configuration. The results of experiments in which the binding of foldback DNA molecules to hydroxyapatite was determined, by using fragments of different single-chain size, agree with previous studies indicating that inverted repeat sequences are located, on average, every 7000 residues throughout the Physarum genome. The inverted repeats are derived from both the repetitive and single-copy components in Physarum nuclear DNA.

Full text

PDF
105

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell A. J., Hardman N. Characterization of foldback sequences in hamster DNA using electron microsocpy. Nucleic Acids Res. 1977 Jan;4(1):247–268. doi: 10.1093/nar/4.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cech T. R., Hearst J. E. An electron microscopic study of mouse foldback DNA. Cell. 1975 Aug;5(4):429–446. doi: 10.1016/0092-8674(75)90062-8. [DOI] [PubMed] [Google Scholar]
  3. Cooke D. J., Dee J. Methods for the isolation and analysis of plasmodial mutants in Physarum polycephalum. Genet Res. 1974 Oct;24(2):175–187. doi: 10.1017/s0016672300015202. [DOI] [PubMed] [Google Scholar]
  4. Evans T. E., Suskind D. Characterization of the mitochondrial DNA of the slime mold Physarum polycephalum. Biochim Biophys Acta. 1971 Jan 28;228(2):350–364. doi: 10.1016/0005-2787(71)90043-8. [DOI] [PubMed] [Google Scholar]
  5. Hardman N., Jack P. L., Brown A. J., McLachlan A. Distribution of inverted repeat sequences in nuclear DNA from Physarum polycephalum. Eur J Biochem. 1979 Feb 15;94(1):179–187. doi: 10.1111/j.1432-1033.1979.tb12884.x. [DOI] [PubMed] [Google Scholar]
  6. Hardman N., Jack P. L. Characterization of foldback sequences in Physarum polycephalum nuclear DNA using the electron microscope. Eur J Biochem. 1977 Apr 1;74(2):275–283. doi: 10.1111/j.1432-1033.1977.tb11391.x. [DOI] [PubMed] [Google Scholar]
  7. Hardman N., Jack P. L. Periodic organisation of foldback sequences in Physarum polycephalum nuclear DNA. Nucleic Acids Res. 1978 Jul;5(7):2405–2423. doi: 10.1093/nar/5.7.2405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jack P. L., Hardman N. Inverted repeat sequences in Physarum polycephalum nuclear deoxyribonucleic acid [proceedings]. Biochem Soc Trans. 1977;5(3):678–679. doi: 10.1042/bst0050678. [DOI] [PubMed] [Google Scholar]
  9. Martinson H. G. The nucleic acid-hydroxylapatite interaction. II. Phase transitions in the deoxyribonucleic acid-hydroxylapatite system. Biochemistry. 1973 Jan 2;12(1):145–150. doi: 10.1021/bi00725a024. [DOI] [PubMed] [Google Scholar]
  10. Mohberg J., Rusch H. P. Isolation and DNA content of nuclei of Physarum polycephalum. Exp Cell Res. 1971 Jun;66(2):305–316. doi: 10.1016/0014-4827(71)90682-3. [DOI] [PubMed] [Google Scholar]
  11. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  12. Schildkraut C. Dependence of the melting temperature of DNA on salt concentration. Biopolymers. 1965;3(2):195–208. doi: 10.1002/bip.360030207. [DOI] [PubMed] [Google Scholar]
  13. Schmid C. W., Manning J. E., Davidson N. Inverted repeat sequences in the Drosophila genome. Cell. 1975 Jun;5(2):159–172. doi: 10.1016/0092-8674(75)90024-0. [DOI] [PubMed] [Google Scholar]
  14. Vogt V. M., Braun R. Structure of ribosomal DNA in Physarum polycephalum. J Mol Biol. 1976 Sep 25;106(3):567–587. doi: 10.1016/0022-2836(76)90252-7. [DOI] [PubMed] [Google Scholar]
  15. Wilson D. A., Thomas C. A., Jr Palindromes in chromosomes. J Mol Biol. 1974 Mar 25;84(1):115–138. doi: 10.1016/0022-2836(74)90216-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES