Abstract
The development of rat lung from a primitive gas-exchange organ to the mature respiratory organ is in large part a postnatal phenomenon that has been well characterized by morphological and morphometric methods. The alveolarization of the lung is achieved during the first 3 weeks of life. Cholinergic innervation of rat lung also appears postnatally. We have monitored the presence or activity of several proteins during postnatal rat lung development. Newborn-rat lung contains negligible amounts of acetylcholinesterase, but the specific activity of acetylcholinesterase reaches adult values by postnatal day 10–11. Neonatal-rat lung does not contain significant amounts of β-galactoside-binding protein [Powell (1980) Biochem. J. 187, 123–129]. The activity of this endogenous lung lectin was apparent at about day 6, was maximal between days 10 and 13 before declining 8–10-fold to reach adult values. Elastin has been implicated from morphological evidence as critical to lung restructuring. We have quantified the amount of desmosine and isodesmosine per g wet wt. of lung. The concentration of elastin, by this criterion, was low and stationary until postnatal day 7; a dramatic increase in elastin concentration occurred between days 10 and 20, when adult values were reached. The peak of lung-lectin activity was coincident with the maturation of acetylcholinesterase and the beginning of rapid elastin cross-linking. The specific activities of angiotensin-converting enzyme, carbonic anhydrase, choline kinase and glucose 6-phosphate dehydrogenase were also monitored.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOYDEN E. A., TOMPSETT D. H. The postnatal growth of the lung in the dog. Acta Anat (Basel) 1961;47:185–215. doi: 10.1159/000141809. [DOI] [PubMed] [Google Scholar]
- Boyden E. A., Tompsett D. H. The changing patterns in the developing lungs of infants. Acta Anat (Basel) 1965;61(2):164–192. doi: 10.1159/000142692. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Burri P. H., Dbaly J., Weibel E. R. The postnatal growth of the rat lung. I. Morphometry. Anat Rec. 1974 Apr;178(4):711–730. doi: 10.1002/ar.1091780405. [DOI] [PubMed] [Google Scholar]
- Burri P. H. The postnatal growth of the rat lung. 3. Morphology. Anat Rec. 1974 Sep;180(1):77–98. doi: 10.1002/ar.1091800109. [DOI] [PubMed] [Google Scholar]
- Chida N., Hirono H., Nishimura Y., Arakawa T. Choline phosphokinase, phosphorylcholine cytidyltransferase and CDP-choline: 1,2-diglyceride cholinephosphotransferase activity in developing rat lung. Tohoku J Exp Med. 1973 Jul;110(3):273–282. doi: 10.1620/tjem.110.273. [DOI] [PubMed] [Google Scholar]
- Crandall E. D., O'Brasky J. E. Direct evidence of participation of rat lung carbonic anhydrase in CO2 reactions. J Clin Invest. 1978 Sep;62(3):618–622. doi: 10.1172/JCI109168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
- Effros R. M., Chang R. S., Silverman P. Acceleration of plasma bicarbonate conversion to carbon dioxide by pulmonary carbonic anhydrase. Science. 1978 Jan 27;199(4327):427–429. doi: 10.1126/science.413195. [DOI] [PubMed] [Google Scholar]
- El-Bermani A. W., Bloomquist E. I. Acetylcholinesterase- and norepinephrine- containing nerves in developing rat lung. J Embryol Exp Morphol. 1978 Dec;48:177–183. [PubMed] [Google Scholar]
- Gremo F., Kobiler D., Barondes S. H. Distribution of an endogenous lectin in the developing chick optic tectum. J Cell Biol. 1978 Nov;79(2 Pt 1):491–499. doi: 10.1083/jcb.79.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klocke R. A. Catalysis of CO2 reactions by lung carbonic anhydrase. J Appl Physiol Respir Environ Exerc Physiol. 1978 Jun;44(6):882–888. doi: 10.1152/jappl.1978.44.6.882. [DOI] [PubMed] [Google Scholar]
- Kobiler D., Barondes S. H. Lectin activity from embryonic chick brain, heart, and liver: changes with development. Dev Biol. 1977 Oct 1;60(1):326–330. doi: 10.1016/0012-1606(77)90130-0. [DOI] [PubMed] [Google Scholar]
- LOOSLI C. G., POTTER E. L. Pre- and postnatal development of the respiratory portion of the human lung with special reference to the elastic fibers. Am Rev Respir Dis. 1959 Jul;80(1 Pt 2):5–23. doi: 10.1164/arrd.1959.80.1P2.5. [DOI] [PubMed] [Google Scholar]
- Levy H. R., Raineri R. R., Nevaldine B. H. On the structure and catalytic function of mammary glucose 6-phosphate dehydrogenase. J Biol Chem. 1966 May 25;241(10):2181–2187. [PubMed] [Google Scholar]
- Marchand A., Chapouthier G., Massoulié J. Developmental aspects of acetylcholinesterase activity in chick brain. FEBS Lett. 1977 Jun 15;78(2):233–236. doi: 10.1016/0014-5793(77)80313-x. [DOI] [PubMed] [Google Scholar]
- McKinley D. N., Whitney P. L. Particulate carbonic anhydrase in homogenates of human kidney. Biochim Biophys Acta. 1976 Oct 11;445(3):780–790. doi: 10.1016/0005-2744(76)90128-5. [DOI] [PubMed] [Google Scholar]
- Nadel J. A. Autonomic control of airway smooth muscle and airway secretions. Am Rev Respir Dis. 1977 Jun;115(6 Pt 2):117–126. doi: 10.1164/arrd.1977.115.S.117. [DOI] [PubMed] [Google Scholar]
- Powell J. T. Purification and properties of lung lectin. Rat lung and human lung beta-galactoside-binding proteins. Biochem J. 1980 Apr 1;187(1):123–129. doi: 10.1042/bj1870123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rieger F., Vigny M. Solubilization and physicochemical characterization of rat brain acetylcholinesterase: development and maturation of its molecular forms. J Neurochem. 1976 Jul;27(1):121–129. doi: 10.1111/j.1471-4159.1976.tb01553.x. [DOI] [PubMed] [Google Scholar]
- Ryan J. W., Ryan U. S., Schultz D. R., Whitaker C., Chung A. Subcellular localization of pulmonary antiotensin-converting enzyme (kininase II). Biochem J. 1975 Feb;146(2):497–499. doi: 10.1042/bj1460497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Starcher B. C. Determination of the elastin content of tissues by measuring desmosine and isodesmosine. Anal Biochem. 1977 May 1;79(1-2):11–15. doi: 10.1016/0003-2697(77)90372-4. [DOI] [PubMed] [Google Scholar]
- Vaccaro C., Brody J. S. Ultrastructure of developing alveoli. I. The role of the interstitial fibroblast. Anat Rec. 1978 Dec;192(4):467–479. doi: 10.1002/ar.1091920402. [DOI] [PubMed] [Google Scholar]
- Vigny M., Koenig J., Rieger F. The motor end-plate specific form of acetylcholinesterase: appearance during embryogenesis and re-innervation of rat muscle. J Neurochem. 1976 Dec;27(6):1347–1353. doi: 10.1111/j.1471-4159.1976.tb02614.x. [DOI] [PubMed] [Google Scholar]
- Wallace K. B., Bailie M. D., Hook J. B. Angiotensin-converting enzyme in developing lung and kidney. Am J Physiol. 1978 Mar;234(3):R141–R145. doi: 10.1152/ajpregu.1978.234.3.R141. [DOI] [PubMed] [Google Scholar]
- Weinhold P. A., Skinner R. S., Sanders R. D. Activity and some properties of choline kinase, cholinephosphate cytidyltransferase and choline phosphotransferase during liver development in the rat. Biochim Biophys Acta. 1973 Oct 17;326(1):43–51. doi: 10.1016/0005-2760(73)90026-x. [DOI] [PubMed] [Google Scholar]
- de Waard A., Hickman S., Kornfeld S. Isolation and properties of beta-galactoside binding lectins of calf heart and lung. J Biol Chem. 1976 Dec 10;251(23):7581–7587. [PubMed] [Google Scholar]