Abstract
1. The distribution of phosphatidylethanolamine, the major lipid of Erwinia carotovora, was investigated in intact bacteria, spheroplasts and outer- and inner-membrane preparations, with the amino-group reagent 2,4,6-trinitrobenzenesulphonic acid. Only 4% was found on the external surface of the outer membrane with 30% on the internal surface, whereas the inner membrane had 27 and 38% on its external and internal surfaces respectively. Some comparative studies were made with three other bacteria. 2. The fluidity of the membranes of E. carotovora was studied by using the fluorescent probe 1,6-diphenylhexa-1,3,5-triene. Results were consistent with the hydrocarbon region of the outer membrane bilayer being less fluid than that of the inner one. 3. On the basis of these and other results a model for the outer- and inner-membrane structures of E. carotovora is proposed.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barsukov L. I., Kulikov V. I., Bergelson L. D. Lipid transfer proteins as a tool in the study of membrane structure. Inside-outside distribution of the phospholipids in the protoplasmic membrane of Micrococcus lysodeikticus. Biochem Biophys Res Commun. 1976 Aug 9;71(3):704–711. doi: 10.1016/0006-291x(76)90888-3. [DOI] [PubMed] [Google Scholar]
- Bishop D. G., Op den Kamp J. A., van Deenen L. L. The distribution of lipids in the protoplast membranes of Bacillus subtilis. A study with phospholipase C and trinitrobenzenesulphonic acid. Eur J Biochem. 1977 Nov 1;80(2):381–391. doi: 10.1111/j.1432-1033.1977.tb11893.x. [DOI] [PubMed] [Google Scholar]
- Carraway K. L. Covalent labeling of membranes. Biochim Biophys Acta. 1975 Dec 29;415(4):379–410. doi: 10.1016/0304-4157(75)90005-2. [DOI] [PubMed] [Google Scholar]
- Costerton J. W., Ingram J. M., Cheng K. J. Structure and function of the cell envelope of gram-negative bacteria. Bacteriol Rev. 1974 Mar;38(1):87–110. doi: 10.1128/br.38.1.87-110.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Hare F., Lussan C. Variations in microviscosity values induced by different rotational behaviour of fluorescent probes in some aliphatic environments. Biochim Biophys Acta. 1977 Jun 2;467(2):262–272. doi: 10.1016/0005-2736(77)90201-2. [DOI] [PubMed] [Google Scholar]
- Hasin M., Rottem S., Razin S. The outer membrane of Proteus mirabilis. I. Isolation and characterization of the outer and cytoplasmic membrane fractions. Biochim Biophys Acta. 1975 Feb 14;375(3):381–394. doi: 10.1016/0005-2736(75)90354-5. [DOI] [PubMed] [Google Scholar]
- Litman B. J. Lipid model membranes. Characterization of mixed phospholipid vesicles. Biochemistry. 1973 Jun 19;12(13):2545–2554. doi: 10.1021/bi00737a028. [DOI] [PubMed] [Google Scholar]
- Marinetti G. V., Love R. Differential reaction of cell membrane phospholipids and proteins with chemical probes. Chem Phys Lipids. 1976 Jul;16(4):239–254. doi: 10.1016/0009-3084(76)90019-0. [DOI] [PubMed] [Google Scholar]
- Osborn M. J., Gander J. E., Parisi E., Carson J. Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. J Biol Chem. 1972 Jun 25;247(12):3962–3972. [PubMed] [Google Scholar]
- Roseman M., Litman B. J., Thompson T. E. Transbilayer exchange of phosphatidylethanolamine for phosphatidylcholine and N-acetimidoylphosphatidylethanolamine in single-walled bilayer vesicles. Biochemistry. 1975 Nov 4;14(22):4826–4830. doi: 10.1021/bi00693a008. [DOI] [PubMed] [Google Scholar]
- Rothman J. E., Kennedy E. P. Asymmetrical distribution of phospholipids in the membrane of Bacillus megaterium. J Mol Biol. 1977 Mar 5;110(3):603–618. doi: 10.1016/s0022-2836(77)80114-9. [DOI] [PubMed] [Google Scholar]
- Rottem S. The effect of lipid A on the fluidity and permeability properties of phospholipid dispersions. FEBS Lett. 1978 Nov 1;95(1):121–124. doi: 10.1016/0014-5793(78)80065-9. [DOI] [PubMed] [Google Scholar]
- Rudy B., Gitler C. Microviscosity of the cell membrane. Biochim Biophys Acta. 1972 Oct 23;288(1):231–236. doi: 10.1016/0005-2736(72)90242-8. [DOI] [PubMed] [Google Scholar]
- Salton M. R., Owen P. Bacterial membrane structure. Annu Rev Microbiol. 1976;30:451–482. doi: 10.1146/annurev.mi.30.100176.002315. [DOI] [PubMed] [Google Scholar]
- Shinitzky M., Barenholz Y. Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. J Biol Chem. 1974 Apr 25;249(8):2652–2657. [PubMed] [Google Scholar]
- Shukla S. D., Green C., Turner J. M. Proteins, phospholipid distribution and fluidity in membranes of the Gram-negative bacterium Erwinia carotovora [proceedings]. Biochem Soc Trans. 1978;6(6):1347–1349. doi: 10.1042/bst0061347. [DOI] [PubMed] [Google Scholar]
- Shukla S. D., Turner J. M. Microbial metabolism of amino alcohols. Biosynthetic utilization of ethanolamine for lipid synthesis by bacteria. Biochem J. 1980 Jan 15;186(1):13–19. doi: 10.1042/bj1860013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shukla S. D., Turner J. M. Preparation and properties of membranes from the gram-negative bacterium Erwinia carotovora. Biochem Soc Trans. 1975;3(5):756–758. doi: 10.1042/bst0030756. [DOI] [PubMed] [Google Scholar]
- Starr M. P., Chatterjee A. K. The genus Erwinia: enterobacteria pathogenic to plants and animals. Annu Rev Microbiol. 1972;26:389–426. doi: 10.1146/annurev.mi.26.100172.002133. [DOI] [PubMed] [Google Scholar]
- von Graevenitz A. The role of opportunistic bacteria in human disease. Annu Rev Microbiol. 1977;31:447–471. doi: 10.1146/annurev.mi.31.100177.002311. [DOI] [PubMed] [Google Scholar]