Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Apr 15;188(1):229–235. doi: 10.1042/bj1880229

Synthesis and conservation of ribosomal proteins during compensatory renal hypertrophy.

W T Melvin, A Kumar, R A Malt
PMCID: PMC1162560  PMID: 7406881

Abstract

The rate of synthesis of ribosomal proteins was investigated as an index of the rate of production of ribosomes in mouse kidney during the first few days after contralateral nephrectomy. Compensatory renal hypertrophy was not associated with a major increase in the synthetic rate of ribosomal proteins and rRNA. Instead, the ratio of the rate of ribosomal-protein synthesis to that of total protein synthesis remained nearly constant. The conformation of glutaraldehyde-fixed ribosomes and ribosomal subunits was unchanged. During the early stages of compensatory renal hypertrophy the accretion of rRNA is due largely to conservation of ribosomes that would otherwise have been degraded.

Full text

PDF
229

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpers D. H., Thier S. O. Role of the free amino acid pool of the intestine in protein synthesis. Biochim Biophys Acta. 1972 Apr 12;262(4):535–545. doi: 10.1016/0005-2787(72)90497-2. [DOI] [PubMed] [Google Scholar]
  2. Amils R., Conde R. D., Scornik O. A. Effect of a nutritional shift on the degradation of abnormal proteins in the mouse liver. Decreased degradation during rapid liver growth. Biochem J. 1977 May 15;164(2):363–369. doi: 10.1042/bj1640363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ausiello D. A., Segal S., Thier S. O. Cellular accumulation of L-lysine in rat kidney cortex in vivo. Am J Physiol. 1972 Jun;222(6):1473–1478. doi: 10.1152/ajplegacy.1972.222.6.1473. [DOI] [PubMed] [Google Scholar]
  4. Baltimore D., Huang A. S. Isopycnic separation of subcellular components from poliovirus-infected and normal HeLa cells. Science. 1968 Nov 1;162(3853):572–574. doi: 10.1126/science.162.3853.572. [DOI] [PubMed] [Google Scholar]
  5. Baxter G. C., Stanners C. P. The effect of protein degradation on cellular growth characteristics. J Cell Physiol. 1978 Aug;96(2):139–145. doi: 10.1002/jcp.1040960202. [DOI] [PubMed] [Google Scholar]
  6. Coe F. L., Korty P. R. Protein synthesis during compensatory renal hypertrophy. Am J Physiol. 1967 Dec;213(6):1585–1589. doi: 10.1152/ajplegacy.1967.213.6.1585. [DOI] [PubMed] [Google Scholar]
  7. Cortes P., Levin N. W., Martin P. R. Ribonucleic acid synthesis in the renal cortex at the initiation of compensatory growth. Biochem J. 1976 Aug 15;158(2):457–470. doi: 10.1042/bj1580457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dicker S. E., Shirley D. G. Mechanism of compensatory renal hypertrophy. J Physiol. 1971 Dec;219(3):507–523. doi: 10.1113/jphysiol.1971.sp009675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferris G. M., Clark J. B. Early changes in plasma and hepatic free amino acids in partially hepatectomised rats. Biochim Biophys Acta. 1972 Jun 26;273(1):73–79. doi: 10.1016/0304-4165(72)90192-4. [DOI] [PubMed] [Google Scholar]
  10. Halliburton I. W., Thomson R. Y. Chemical aspects of compensatory renal hypertrophy. Cancer Res. 1965 Dec;25(11):1882–1887. [PubMed] [Google Scholar]
  11. Henshaw E. C., Guiney D. G., Hirsch C. A. The ribosome cycle in mammalian protein synthesis. I. The place of monomeric ribosomes and ribosomal subunits in the cycle. J Biol Chem. 1973 Jun 25;248(12):4367–4376. [PubMed] [Google Scholar]
  12. Hill J. M., Ab G., Malt R. A. Ribonucleic acid labelling and nucleotide pools during compensatory renal hypertrophy. Biochem J. 1974 Dec;144(3):447–453. doi: 10.1042/bj1440447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hill J. M., Malamud D. Decreased protein catabolism during stimulated growth. FEBS Lett. 1974 Sep 15;46(1):308–311. doi: 10.1016/0014-5793(74)80394-7. [DOI] [PubMed] [Google Scholar]
  14. Hill J. M. Ribosomal RNA metabolism during renal hypertrophy. Evidence of decreased degradation of newly synthesized ribosomal RNA. J Cell Biol. 1975 Jan;64(1):260–265. doi: 10.1083/jcb.64.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Janicki R. H., Argyris T. S. Kidney growth and adaptation of phosphate-dependent glutaminase in the mouse. Am J Physiol. 1969 Nov;217(5):1389–1395. doi: 10.1152/ajplegacy.1969.217.5.1389. [DOI] [PubMed] [Google Scholar]
  16. Malamud D., Paddock J., Malt R. A. Mitosis and DNA synthesis in mouse kidney: sources of error in evaluating cell proliferation. Proc Soc Exp Biol Med. 1972 Jan;139(1):28–31. doi: 10.3181/00379727-139-36069. [DOI] [PubMed] [Google Scholar]
  17. Malt R. A., Lemaitre D. A. Accretion and turnover of RNA in the renoprival kidney. Am J Physiol. 1968 May;214(5):1041–1047. doi: 10.1152/ajplegacy.1968.214.5.1041. [DOI] [PubMed] [Google Scholar]
  18. Malt R. A., Lemaittre D. A. Nucleic acids in fetal kidney after maternal nephrectomy. Proc Soc Exp Biol Med. 1969 Feb;130(2):539–542. doi: 10.3181/00379727-130-35600. [DOI] [PubMed] [Google Scholar]
  19. Malt R. A., Miller W. I. Sequential changes in classes of RNA during compensatory growth of the kidney. J Exp Med. 1967 Jul 1;126(1):1–13. doi: 10.1084/jem.126.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maruyama K., Sunde M. L., Swick R. W. Growth and muscle protein turnover in the chick. Biochem J. 1978 Nov 15;176(2):573–582. doi: 10.1042/bj1760573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Melvin W. T., Keir H. M. Onset of ribosome degradation during cessation of growth in BHK-21/C13 cells. Biochem J. 1978 Dec 15;176(3):933–941. doi: 10.1042/bj1760933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Melvin W. T., Kumar A., Malt R. A. Conservation of ribosomal RNA during compensatory renal hypertrophy. A major mechanism in RNA accretion. J Cell Biol. 1976 Jun;69(3):548–556. doi: 10.1083/jcb.69.3.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mortimore G. E., Woodside K. H., Henry J. E. Compartmentation of free valine and its relation to protein turnover in perfused rat liver. J Biol Chem. 1972 May 10;247(9):2776–2784. [PubMed] [Google Scholar]
  24. Paskin N., Mayer R. J. The role of enzyme degradation in enzyme turnover during tissue differentiation. Biochim Biophys Acta. 1977 Jan 3;474(1):1–10. doi: 10.1016/0005-2787(77)90208-8. [DOI] [PubMed] [Google Scholar]
  25. Pederson T., Kumar A. Relationship between protein synthesis and ribosome assembly in HeLa cells. J Mol Biol. 1971 Nov 14;61(3):655–668. doi: 10.1016/0022-2836(71)90070-2. [DOI] [PubMed] [Google Scholar]
  26. Priestley G. C., Malt R. A. Membrane-bound ribosomes in kidney: methods of estimation and effect of compensatory renal growth. J Cell Biol. 1969 Jun;41(3):886–893. doi: 10.1083/jcb.41.3.886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ross J. S., Vancura P., Malt R. A. Accelerated transport of -aminoisobutyric acid in kidney during compensatory hypertrophy. Proc Soc Exp Biol Med. 1973 Feb;142(2):632–634. doi: 10.3181/00379727-142-37082. [DOI] [PubMed] [Google Scholar]
  28. Sendecki W., Kuliszewski M., Patzer J. Changes of ribosomal activity in rat kidney after unilateral nephrectomy. Acta Biochim Pol. 1973;20(1):63–71. [PubMed] [Google Scholar]
  29. Tauber R., Reutter W. Protein degradation in the plasma membrane of regenerating liver and Morris hepatomas. Eur J Biochem. 1978 Feb 1;83(1):37–45. doi: 10.1111/j.1432-1033.1978.tb12065.x. [DOI] [PubMed] [Google Scholar]
  30. Threlfall G., Taylor D. M., Buck A. T. Studies of the changes in growth and DNA synthesis in the rat kidney during experimentally induced renal hypertrophy. Am J Pathol. 1967 Jan;50(1):1–14. [PMC free article] [PubMed] [Google Scholar]
  31. Tomashefsky P., Tannenbaum M. Macromolecular metabolism in renal compensatory hypertrophy. I. Protein synthesis. Lab Invest. 1969 Oct;21(4):358–364. [PubMed] [Google Scholar]
  32. Warner J. R., Kumar A., Udem S. A., Wu R. S. Ribosomal proteins and the assembly of ribosomes in eukaryotes. Biochem Soc Symp. 1973;37(0):3–22. [PubMed] [Google Scholar]
  33. Warner J. R. The assembly of ribosomes in HeLa cells. J Mol Biol. 1966 Aug;19(2):383–398. doi: 10.1016/s0022-2836(66)80012-8. [DOI] [PubMed] [Google Scholar]
  34. Weber M. J. Ribosomal RNA turnover in contact inhibited cells. Nat New Biol. 1972 Jan 12;235(54):58–61. doi: 10.1038/newbio235058a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES