Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Jan 1;193(1):83–86. doi: 10.1042/bj1930083

The penicillin-binding site in the exocellular DD-carboxypeptidase-transpeptidase of Actinomadura R39.

C Duez, B Joris, J M Frère, J M Ghuysen, J Van Beeumen
PMCID: PMC1162578  PMID: 7305936

Abstract

Heat denaturation and Pronase degradation of the complex previously formed between benzylpenicillin and the exocellular DD-carboxypeptidase-transpeptidase of Actinomadura R39 yields a heptapeptide H-Leu-Pro-Ala-Ser-Asn-Gly-Val-OH, where the benzylpenicilloyl group is ester-linked to the serine residue. This linkage is very labile and its hydrolysis causes the release of benzylpenicilloate. In contrast, the native benzylpenicilloyl-enzyme complex is very stable (half-life 70 h at 37 degrees C) and its breakdown proceeds via fragmentation of the bound benzylpenicilloyl group [Fuad, Frère, Ghuysen, Duez & Iwatsubo (1976) Biochem. J. 155, 623-629].

Full text

PDF
83

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bruton C. J., Hartley B. S. Chemical studies on methionyl-tRNA synthetase from Escherichia coli. J Mol Biol. 1970 Sep 14;52(2):165–178. doi: 10.1016/0022-2836(70)90023-9. [DOI] [PubMed] [Google Scholar]
  2. Degelaen J., Feeney J., Roberts G. C., Burgen A. S., Frère J. M., Ghuysen J. M. NMR evidence for the structure of the complex between penicillin and the DD-carboxypeptidase of Streptomyces R61. FEBS Lett. 1979 Feb 1;98(1):53–56. doi: 10.1016/0014-5793(79)80150-7. [DOI] [PubMed] [Google Scholar]
  3. Fisher J., Belasco J. G., Charnas R. L., Khosla S., Knowles J. R. Beta-lactamase inactivation by mechanism-based reagents. Philos Trans R Soc Lond B Biol Sci. 1980 May 16;289(1036):309–319. doi: 10.1098/rstb.1980.0048. [DOI] [PubMed] [Google Scholar]
  4. Frere J., Ghuysen J., Degelaen J., Loffet A., Perkins H. R. Fragmentation of benzylpenicillin after interaction with the exocellular DD-carboxypeptidase-transpeptidases of Streptomyces R61 and R39. Nature. 1975 Nov 13;258(5531):168–170. doi: 10.1038/258168a0. [DOI] [PubMed] [Google Scholar]
  5. Frere J., Ghuysen J., Vanderhaeghe H., Adriaens P., Degelaen J., De Graeve J. Fate of thiazolidine ring during fragmentation of penicillin by exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R61. Nature. 1976 Apr 1;260(5550):451–454. doi: 10.1038/260451a0. [DOI] [PubMed] [Google Scholar]
  6. Frère J. M., Duez C., Ghuysen J. M., Vandekerkhove J. Occurrence of a serine residue in the penicillin-binding site of the exocellular DD-carboxy-peptidase-transpeptidase from Streptomyces R61. FEBS Lett. 1976 Nov;70(1):257–260. doi: 10.1016/0014-5793(76)80770-3. [DOI] [PubMed] [Google Scholar]
  7. Frère J. M., Ghuysen J. M., Reynolds P. E., Moreno R. Binding of beta-lactam antibiotics to the exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R39. Biochem J. 1974 Oct;143(1):241–249. doi: 10.1042/bj1430241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fuad N., Frère J. M., Ghuysen J. M., Duez C., Iwatsubo M. Mode of interaction between beta-lactam antibiotics and the exocellular DD-carboxypeptidase--transpeptidase from Streptomyces R39. Biochem J. 1976 Jun 1;155(3):623–629. doi: 10.1042/bj1550623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Georgopapadakou N., Hammarström S., Strominger J. L. Isolation of the penicillin-binding peptide from D-alanine carboxypeptidase of Bacillus subtilis. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1009–1012. doi: 10.1073/pnas.74.3.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ghuysen J. M., Frère J. M., Leyh-Bouille M., Coyette J., Dusart J., Nguyen-Distèche M. Use of model enzymes in the determination of the mode of action of penicillins and delta 3-cephalosporins. Annu Rev Biochem. 1979;48:73–101. doi: 10.1146/annurev.bi.48.070179.000445. [DOI] [PubMed] [Google Scholar]
  11. Knott-Hunziker V., Waley S. G., Orlek B. S., Sammes P. G. Penicillinase active sites: labelling of serine-44 in beta-lactamase I by 6beta-bromopenicillanic acid. FEBS Lett. 1979 Mar 1;99(1):59–61. doi: 10.1016/0014-5793(79)80248-3. [DOI] [PubMed] [Google Scholar]
  12. Vandekerckhove J., Van Montagu M. Sequence analysis of fluorescamine-stained peptides and proteins purified on a nanomole scale. Application to proteins of bacteriophage MS2. Eur J Biochem. 1974 May 2;44(1):279–288. doi: 10.1111/j.1432-1033.1974.tb03483.x. [DOI] [PubMed] [Google Scholar]
  13. Weiner A. M., Platt T., Weber K. Amino-terminal sequence analysis of proteins purified on a nanomole scale by gel electrophoresis. J Biol Chem. 1972 May 25;247(10):3242–3251. [PubMed] [Google Scholar]
  14. Yocum R. R., Waxman D. J., Rasmussen J. R., Strominger J. L. Mechanism of penicillin action: penicillin and substrate bind covalently to the same active site serine in two bacterial D-alanine carboxypeptidases. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2730–2734. doi: 10.1073/pnas.76.6.2730. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES