Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Jan 1;193(1):87–92. doi: 10.1042/bj1930087

Changes in the characteristics and distribution of ferritin in iron-loaded cell cultures.

T G Hoy, A Jacobs
PMCID: PMC1162579  PMID: 7305937

Abstract

When Chang liver cells are grown in an iron-rich medium for up to 20 weeks, iron loading up to 50 times the normal cellular iron content may be obtained, although ferritin increases only to about 10 times normal. Ferritin has been isolated from such cells, and the isoferritin pattern found on elution from DEAE-Sephadex A-50 by increasing chloride concentrations has been used as a basis for studying changes in the properties of ferritin under conditions of cellular loading. A consistent shift of peak ferritin-elution position to higher chloride concentrations (lower pI) occurs when cells are loaded with ferric nitrilotriacetate for increasing lengths of time. A change in immunoreactivity also takes place on loading, the ratio of ferritin reacting with heart and spleen ferritin antibodies increasing at any particular value of pI. Cells were pulse-labelled with [59Fe]ferric nitrilotriacetate and [3H]leucine followed by non-radioactive iron in the same form. During the 72 h after the synthesis of new protein and its incorporation of iron, there is a slight acid shift in its isoelectric point. This effect is seen in both normal and loaded cells, with the whole spectrum being shifted towards lower pI in the loaded state. These findings suggest that the shift to more acidic ferritins on iron loading and the associated changes in antigenicity may be unrelated to subunit composition.

Full text

PDF
87

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman T. G., Arosio P., Drysdale J. W. Multiple subunits in human ferritins: evidence for hybrid molecules. Biochem Biophys Res Commun. 1975 Apr 21;63(4):1056–1062. doi: 10.1016/0006-291x(75)90676-2. [DOI] [PubMed] [Google Scholar]
  2. Arosio P., Adelman T. G., Drysdale J. W. On ferritin heterogeneity. Further evidence for heteropolymers. J Biol Chem. 1978 Jun 25;253(12):4451–4458. [PubMed] [Google Scholar]
  3. Bomford A., Berger M., Lis Y., Williams R. The iron content of human liver and spleen isoferritins correlates with their isoelectric point and subunit composition. Biochem Biophys Res Commun. 1978 Jul 14;83(1):334–341. doi: 10.1016/0006-291x(78)90436-9. [DOI] [PubMed] [Google Scholar]
  4. Drysdale J. W. Ferritin phenotypes: structure and metabolism. Ciba Found Symp. 1976 Dec 7;(51):41–67. doi: 10.1002/9780470720325.ch3. [DOI] [PubMed] [Google Scholar]
  5. Hoy T. G., Harrison P. M. The uptake of ferric iron by rat liver ferritin in vivo and in vitro. Br J Haematol. 1976 Aug;33(4):497–504. doi: 10.1111/j.1365-2141.1976.tb03568.x. [DOI] [PubMed] [Google Scholar]
  6. Iancu T. C., Neustein H. B., Landing B. H. The liver in thalassaemia major: ultrastructural observations. Ciba Found Symp. 1976 Dec 7;(51):293–316. [PubMed] [Google Scholar]
  7. Jacobs A., Hoy T., Humphrys J., Perera P. Iron overload in Chang cell cultures: biochemical and morphological studies. Br J Exp Pathol. 1978 Oct;59(5):489–498. [PMC free article] [PubMed] [Google Scholar]
  8. Jones B. M., Worwood M. An immunoradiometric assay for the acidic ferritin of human heart: application to human tissues, cells and serum. Clin Chim Acta. 1978 Apr 3;85(1):81–88. doi: 10.1016/0009-8981(78)90104-3. [DOI] [PubMed] [Google Scholar]
  9. Powell L. W., Alpert E., Isselbacher K. J., Drysdale J. W. Human isoferritins: organ specific iron and apoferritin distribution. Br J Haematol. 1975 May;30(1):47–55. doi: 10.1111/j.1365-2141.1975.tb00516.x. [DOI] [PubMed] [Google Scholar]
  10. Powell L. W., McKeering L. V., Halliday J. W. Alterations in tissue ferritins in iron storage disorders. Gut. 1975 Nov;16(11):909–912. doi: 10.1136/gut.16.11.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Russell S. M., Harrison P. M. Heterogeneity in horse ferritins. A comparative study of surface charge, iron content and kinetics of iron uptake. Biochem J. 1978 Oct 1;175(1):91–104. doi: 10.1042/bj1750091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wagstaff M., Worwood M., Jacobs A. Properties of human tissue isoferritins. Biochem J. 1978 Sep 1;173(3):969–977. doi: 10.1042/bj1730969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. White G. P., Bailey-Wood R., Jacobs A. The effect of chelating agents on cellular iron metabolism. Clin Sci Mol Med. 1976 Mar;50(3):145–152. doi: 10.1042/cs0500145. [DOI] [PubMed] [Google Scholar]
  14. White G. P., Jacobs A. Iron uptake by Chang cells from transferrin, nitriloacetate and citrate complexes: the effects of iron-loading and chelation with desferrioxamine. Biochim Biophys Acta. 1978 Oct 3;543(2):217–225. doi: 10.1016/0304-4165(78)90066-1. [DOI] [PubMed] [Google Scholar]
  15. Worwood M., Dawkins S., Wagstaff M., Jacobs A. The purification and properties of ferritin from human serum. Biochem J. 1976 Jul 1;157(1):97–103. doi: 10.1042/bj1570097. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES